Let `f : [0, ∞) → R, \ f(x) = x^2 + 1`.
The equation `f(f(x)) = (185)/(16)` has real solution(s)
- `x = ± (sqrt13)/(4)`
- `x = (sqrt13)/(4)`
- `x = ± (sqrt13)/(2)`
- `x = (3)/(2)`
- `x = ± (3)/(2)`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f : [0, ∞) → R, \ f(x) = x^2 + 1`.
The equation `f(f(x)) = (185)/(16)` has real solution(s)
`D`
`f(f(x))` | `= (x^2 + 1)^2 + 1` |
`(185)/(16)` | `= x^4 + 2x^2 + 2` |
`0` | `= x^4 + 2x^2 – (153)/(16)` |
`text{Solve (by CAS):}`
`x = (3)/(2) , \ x ∈ [0, ∞)`
The function `f` satisfies the functional equation `f (f (x)) = x` for the maximal domain of `f.`
The rule for the function is
`E`
`text(Solution 1)`
`text(Define each specific function)`
`(text{i.e. define}\ \ f(x) = (x + 1)/(x – 1))`
`f(f(x)) = x\ \ text(when)\ \ f(x) = (x + 1)/(x – 1)`
`=> E`
`text(Solution 2)`
`text(Consider)\ \ f(x) = (x + 1)/(x – 1)`
`f(f(x))` | `=((x + 1)/(x – 1) +1)/((x + 1)/(x – 1) -1)` |
`=(x+1+x-1)/(x+1-x+1)` | |
`=x` |
`=>E`
Which one of the following functions satisfies the functional equation `f (f(x)) = x` for every real number `x?`
`E`
`text(By trial and error,)`
`text(Consider:)\ \ f(x)=2-x`
`f(f(x))` | `=2-(2-x)` |
`=x` |
`=> E`