Solve the following equation for \(a\):
\(a^{\log_e 3}=9\) (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Solve the following equation for \(a\):
\(a^{\log_e 3}=9\) (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(a=e^2\)
| \(a^{\log_e 3}\) | \(=9\) |
| \(\log_e a^{ \log_e 3}\) | \(=\log_e 3^2\) |
| \(\log_e 3 \times \log_e a\) | \(=2 \log_e 3\) |
| \(\log _e a\) | \(=\dfrac{2 \log _e 3}{\log _e 3}\) |
| \(\log _e a\) | \(=2\) |
| \(a\) | \(=e^2\) |
Solve the following equation for \(x\):
\(\log _3(x-4)-\log _3 x=\dfrac{4}{3} \log _3 8\) (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(x=-\dfrac{4}{15}\)
| \(\log _3(x-4)-\log _3 x\) | \(=\dfrac{4}{3} \log _3 8\) |
| \(\log _3\left(\dfrac{x-4}{x}\right)\) | \(=\log _3 8^{\frac{4}{3}}\) |
| \(\log _3\left(\dfrac{x-4}{x}\right)\) | \(=\log _3 16\) |
| \(\dfrac{x-4}{x}\) | \(=16\) |
| \(x-4\) | \(=16x\) |
| \(15 x\) | \(=-4\) |
| \(x\) | \(=-\dfrac{4}{15}\) |
What is the solution of the equation `log _a x^3=b`, where a and b are positive constants?
`B`
| `log_a x^3` | `=b` | |
| `3log_a x` | `=b` | |
| `log_a x` | `=b/3` | |
| `:.x` | `=a^(b/3)` |
`=>B`
Find `x` given `100^(x-2) = 1000^x`. (2 marks)
`-4`
| `100^(x-2)` | `= 1000^x` |
| `(10^2)^(x-2)` | `= (10^3)^x` |
| `10^(2x-4)` | `= (10)^(3x)` |
| `2x-4` | `=3x` |
| `:. x` | `= -4` |
Which of the following is equal to `(log_2 9)/(log_2 3)`?
`A`
| `(log_2 9)/(log_2 3)` | `= (log_2 3^2)/(log_2 3)` |
| `= (2 log_2 3)/(log_2 3)` | |
| `= 2` |
`=> A`
If `f(x) = 3 log_e (2x),` and `f(5x) = log_e (y),`
then `y` is equal to
`D`
| `f(5x)` | `= 3 log_e (2(5x))` |
| `log_e (y)` | `= 3 log_e (10 x)` |
| `= log_e (10x)^3` | |
| `y` | `= 1000 x^3` |
`=> D`
Write `log 2 + log 4 + log 8 + … + log 512` in the form `a log b` where `a` and `b` are integers greater than `1.` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`45 log 2`
`log 2 + log 4 + log 8 + … + log 512`
`= log 2^1 + log 2^2 + log2^3 + … + log 2^9`
`= log 2 + 2 log 2 + 3 log 2 + … + 9 log 2`
`= 45 log 2`
Let `a=e^x`
Which expression is equal to `log_e(a^2)`?
`C`
| `log_e(a^2)` | `=log_e(e^x)^2` |
| `=log_e(e^(2x))` | |
| `=2xlog_ee` | |
| `=2x` |
`=> C`
What is the solution of `5^x=4`?
`C`
| `5^x` | `=4` |
| `log_2 5^x` | `=log_2 4` |
| `x log_2 5` | `=log_2 4` |
| `:.x` | `=(log_2 4)/(log_2 5)` |
`=>C`