Given \(m\) and \(n\) are positive constants, which expression is equal to
\(\log _m x^5=n\)
- \(x=n^{\frac{m}{5}}\)
- \(x=m^{\frac{n}{5}}\)
- \(x=\dfrac{n^m}{5}\)
- \(x=\dfrac{m^n}{5}\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given \(m\) and \(n\) are positive constants, which expression is equal to
\(\log _m x^5=n\)
\(\Rightarrow B\)
\(\log _m x^5=n\)
\(\text{By definition:}\)
| \(x^5\) | \(=m^n\) |
| \(x\) | \(=\left(m^n\right)^{\frac{1}{5}}\) |
| \(=m^{\frac{n}{5}}\) |
\(\Rightarrow B\)
What is the solution of the equation `log _a x^3=b`, where a and b are positive constants?
`B`
| `log_a x^3` | `=b` | |
| `3log_a x` | `=b` | |
| `log_a x` | `=b/3` | |
| `:.x` | `=a^(b/3)` |
`=>B`
If `y = log_a (7x - b) + 3`, then `x` is equal to
`C`
| `y – 3` | `= log_a (7x – b)` |
| `a^(y – 3)` | `= 7x – b` |
| `a^(y – 3) + b` | `= 7x` |
| `:. x` | `= 1/7 (a^(y – 3) + b)` |
`=> C`
What is the solution to the equation `log_2(x-1) = 8`?
`D`
| `log_2 (x-1)` | `= 8` |
| `x-1` | `= 2^8` |
| `x` | `= 257` |
`=> D`
Solve `log_e x-3/log_ex=2` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x=e^3\ \ text(or)\ \ e^-1`
| `log_e x-3/(log_ex)` | `=2` |
| `(log_ex)^2-3` | `=2log_e x` |
| `(log_ex)^2-2log_ex-3` | `=0` |
| `text(Let)\ X=log_ex` | |
| `:.\ X^2-2X-3` | `=0` |
| `(X-3)(X+1)` | `=0` |
| `X` | `=3` | `\ \ \ \ \ \ \ \ \ \ ` | `X` | `=-1` |
| `log_ex` | `=3` | `\ \ \ \ \ \ \ \ \ \ ` | `log_ex` | `=-1` |
| `x` | `=e^3` | `\ \ \ \ \ \ \ \ \ \ ` | `x` | `=e^-1` |
`:.x=e^3\ \ text(or)\ \ e^-1`
Solve the equation `lnx=2`. Give you answer correct to four decimal places. (2 marks)
`7.3891`
| `ln x` | `=2` |
| `log_e x` | `=2` |
| `x` | `=e^2` |
| `=7.38905…` | |
| `=7.3891\ \ text{(to 4 d.p.)}` |