SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, EXT1 F1 2020 SPEC1 4

Solve the inequality  `3 - x > 1/|x - 4|`  for `x`, expressing your answer in interval notation.  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`x ∈ (– oo, (7 – sqrt 5)/2)`

Show Worked Solution

`3 – x > 1/|x – 4|`

`|x – 4| (3 – x) > 1`
 

`text(If)\ \ x – 4 > 0, x > 4`

`(x – 4) (3 – x)` `> 1`
`3x – x^2 – 12 + 4x` `> 1`
`-x^2 + 7x – 13` `> 0`

 
`Delta = 7^2 – 4 ⋅ 1 ⋅ 13 = -3 < 0`

`=>\ text(No Solutions)`
 

`text(If)\ \ x – 4 < 0, x < 4`

`-(x – 4) (3 – x)` `> 1`
`x^2 – 7x + 12` `> 1`
`x^2 – 7x + 11` `> 0`
`x` `= (7 +- sqrt(7^2 – 4 ⋅ 1 ⋅ 11))/2`
  `= (7 +- sqrt 5)/2`

`text(Combining solutions)`

`(x < (7 – sqrt 5)/2  ∪ x > (7 + sqrt 5)/2)  nn x < 4`

`x ∈ (– oo, (7 – sqrt 5)/2)`

Filed Under: Inequalities, Inequalities (Ext1) Tagged With: Band 4, smc-1033-20-Absolute Value, smc-1033-50-Interval notation, SMc-6643-20-Absolute Value, smc-6643-50-Interval Notation

Copyright © 2014–2026 SmarterEd.com.au · Log in