A polynomial \(f(x)\) is defined by
\(f(x)=-3x^3+27x^2+12x-1\)
Explain what happens to \(f(x)\) as \(x \rightarrow-\infty\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
A polynomial \(f(x)\) is defined by
\(f(x)=-3x^3+27x^2+12x-1\)
Explain what happens to \(f(x)\) as \(x \rightarrow-\infty\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\text{Since}\ f(x) \ \text{has degree 3:}\)
\(\text{As} \ \ x \rightarrow-\infty, x^3 \rightarrow-\infty\)
\(f(x) \ \text{has leading coefficient}=-3\)
\(\therefore\ \text{As} \ \ x \rightarrow-\infty,-3 x^3 \rightarrow \infty, \ f(x) \rightarrow \infty\)
\(\text{Since}\ f(x) \ \text{has degree 3:}\)
\(\text{As} \ \ x \rightarrow-\infty, x^3 \rightarrow-\infty\)
\(f(x) \ \text{has leading coefficient}=-3\)
\(\therefore\ \text{As} \ \ x \rightarrow-\infty,-3 x^3 \rightarrow \infty, \ f(x) \rightarrow \infty\)
Consider a polynomial \(y=(x+3)^2(2-x) \cdot Q(x)\)
where \(Q(x)=6-x-x^2\)
Explain what happens to \(y\) as \(x \rightarrow-\infty\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
| \(y\) | \(=(x+3)^2(2-x)\left(6-x-x^2\right)\) |
| \(=(x+3)^2(2-x)(x+3)(2-x)\) | |
| \(=(x+3)^3(2-x)^2\) |
\(\text{Degree\(=5\), Leading co-efficient\(=1\)}\)
\(\therefore \text{As} \ \ x \rightarrow-\infty, x^5 \rightarrow-\infty, y \rightarrow-\infty\)
| \(y\) | \(=(x+3)^2(2-x)\left(6-x-x^2\right)\) |
| \(=(x+3)^2(2-x)(x+3)(2-x)\) | |
| \(=(x+3)^3(2-x)^2\) |
\(\text{Degree\(=5\), Leading co-efficient\(=1\)}\)
\(\therefore \text{As} \ \ x \rightarrow-\infty, x^5 \rightarrow-\infty, y \rightarrow-\infty\)
Consider the polynomial \(P(x)=x(3-x)^3\).
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
Consider a polynomial \(y=-2 x^5-26 x^4-x+1\).
With reference to the leading term, explain what happens to \(y\) as \(x \rightarrow-\infty\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\text{As}\ \ x \rightarrow-\infty,\ \ x^{5}\ \rightarrow-\infty\)
\(\text{Since the leading coefficient \((-2)\) is negative:}\)
\(\text{As}\ \ x \rightarrow-\infty,\ \ y \rightarrow \infty.\)
\(\text{As}\ \ x \rightarrow-\infty,\ \ x^{5}\ \rightarrow-\infty\)
\(\text{Since the leading coefficient \((-2)\) is negative:}\)
\(\text{As}\ \ x \rightarrow-\infty,\ \ y \rightarrow \infty.\)