SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Polynomials, EXT1 EQ-Bank 8

A polynomial \(f(x)\) is defined by

\(f(x)=-3x^3+27x^2+12x-1\)

Explain what happens to \(f(x)\) as  \(x \rightarrow-\infty\).   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Since}\ f(x) \ \text{has degree 3:}\)

\(\text{As} \ \ x \rightarrow-\infty, x^3 \rightarrow-\infty\)

\(f(x) \ \text{has leading coefficient}=-3\)

\(\therefore\ \text{As} \ \ x \rightarrow-\infty,-3 x^3 \rightarrow \infty, \ f(x) \rightarrow \infty\)

Show Worked Solution

\(\text{Since}\ f(x) \ \text{has degree 3:}\)

\(\text{As} \ \ x \rightarrow-\infty, x^3 \rightarrow-\infty\)

\(f(x) \ \text{has leading coefficient}=-3\)

\(\therefore\ \text{As} \ \ x \rightarrow-\infty,-3 x^3 \rightarrow \infty, \ f(x) \rightarrow \infty\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-30-\(x \rightarrow \pm \infty\), syllabus-2027

Polynomials, EXT1 EQ-Bank 7

Consider a polynomial  \(y=(x+3)^2(2-x) \cdot Q(x)\)

where  \(Q(x)=6-x-x^2\)

Explain what happens to \(y\) as  \(x \rightarrow-\infty\).   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
\(y\) \(=(x+3)^2(2-x)\left(6-x-x^2\right)\)
  \(=(x+3)^2(2-x)(x+3)(2-x)\)
  \(=(x+3)^3(2-x)^2\)

 

\(\text{Degree\(=5\), Leading co-efficient\(=1\)}\)

\(\therefore \text{As} \ \ x \rightarrow-\infty, x^5 \rightarrow-\infty, y \rightarrow-\infty\)

Show Worked Solution
\(y\) \(=(x+3)^2(2-x)\left(6-x-x^2\right)\)
  \(=(x+3)^2(2-x)(x+3)(2-x)\)
  \(=(x+3)^3(2-x)^2\)

 

\(\text{Degree\(=5\), Leading co-efficient\(=1\)}\)

\(\therefore \text{As} \ \ x \rightarrow-\infty, x^5 \rightarrow-\infty, y \rightarrow-\infty\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-30-\(x \rightarrow \pm \infty\), syllabus-2027

Polynomials, EXT1 EQ-Bank 3

Consider the polynomial \(P(x)=x(3-x)^3\).

  1. State the degree of the polynomial and identify the leading coefficient.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Explain what happens to \(y\) as  \(x \rightarrow \pm \infty\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Without using calculus, sketch \(P(x)\) showing its general form and any \(x\)-intercepts.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\text{Degree}\ P(x)=4\)

\(\text{Leading co-efficient}=-1\)
 

b.    \(\text{As} \ \ x \rightarrow-\infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).

\(\text{As} \ \ x \rightarrow \infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).
 

c.    \(P(x)\ \text{has zeroes at}\ \ x=0, 3:\)


       

Show Worked Solution

a.    \(\text{Degree}\ P(x)=4\)

\(\text{Leading co-efficient}=-1\)
 

b.    \(\text{As} \ \ x \rightarrow-\infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).

\(\text{As} \ \ x \rightarrow \infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).
 

c.    \(P(x)\ \text{has zeroes at}\ \ x=0, 3:\)


       

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-20-Degree/Coefficients, smc-6742-30-\(x \rightarrow \pm \infty\), smc-6742-40-Sketch Graphs, syllabus-2027

Polynomials, EXT1 EQ-Bank 2

Consider a polynomial  \(y=-2 x^5-26 x^4-x+1\).

With reference to the leading term, explain what happens to \(y\) as  \(x \rightarrow-\infty\).   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{As}\ \ x \rightarrow-\infty,\ \ x^{5}\ \rightarrow-\infty\)

\(\text{Since the leading coefficient \((-2)\) is negative:}\)

\(\text{As}\ \ x \rightarrow-\infty,\ \ y \rightarrow \infty.\)

Show Worked Solution

\(\text{As}\ \ x \rightarrow-\infty,\ \ x^{5}\ \rightarrow-\infty\)

\(\text{Since the leading coefficient \((-2)\) is negative:}\)

\(\text{As}\ \ x \rightarrow-\infty,\ \ y \rightarrow \infty.\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-30-\(x \rightarrow \pm \infty\), syllabus-2027

Copyright © 2014–2026 SmarterEd.com.au · Log in