SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Algebra, MET2 2023 VCAA 4 MC

Consider the system of simultaneous equations below containing the parameter \(k\).

\(kx+5y\) \(=k+5\)
\(4x+(k+1)y\) \(=0\)

 
The value(s) of \(k\) for which the system of equations has infinite solutions are

  1. \(k\in \{-5, 4\}\)
  2. \(k\in \{-5\}\)
  3. \(k\in \{4\}\)
  4. \(k\in R\setminus \{-5, 4\}\)
  5. \(k\in R\setminus \{-5\}\)
Show Answers Only

\(B\)

Show Worked Solution
\(kx+5y\) \(=k+5\) \(\ \ \rightarrow\ \ \ \ \) \(y\) \(=-\dfrac{k}{5}x+\dfrac{k+5}{5}\)
\(4x+(k+1)y\) \(=0\) \(\ \ \rightarrow\ \ \ \ \) \(y\) \(=-\dfrac{4}{k+1}x+0\)

 
\(\text{Infinite solutions when gradients and }y\text{-intercepts equal.}\)
 
\(\text{Equating gradients (by CAS):}\)

\(-\dfrac{k}{5}=-\dfrac{4}{k+1}\ \ \Rightarrow\ \ k=4\ \text{ or}\ -5\)
   
\(\text{Equating intercepts:}\)

\(\dfrac{k+5}{5}=0\ \ \Rightarrow \ \ k=-5\)

\(k=-5\ \ \text{satisfies both equations (infinite solutions)}.\)

\(\Rightarrow B\)

Mean mark 55%.

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-721-20-Infinite solutions

Algebra, MET1 2022 VCAA 3

Consider the system of equations

`kx-5y=4+k`

`3x+(k+8) y=-1`

Determine the value of `k` for which the system of equations above has an infinite number of solutions.   (3 marks)

--- 12 WORK AREA LINES (style=lined) ---

Show Answers Only

`k=-3` for infinite solutions

Show Worked Solution

Making `y` the subject of each equation:

`k x-5 y`  `=4+k `  
`y` `=\frac{k}{5} x+\frac{(-4-k)}{5}`   (1)
     
`3x+(k+8) y` `=-1`  
`y` `=\frac{-3}{k+8} \times-\frac{1}{k+8}`   (2)

 
From equations (1) and (2)

`m_1=\frac{k}{5}` and `m_2=-\frac{3}{k+8}`
 

An infinite number of solutions occur when `m_1=m_2`

`\frac{k}{5}` `=-\frac{3}{k+8}`  
`k(k+8)` `=-15`  
`k^2+8 k+15` `=0`  
`(k+3)(k+5)` `=0`  

 
`\therefore k=-5,-3`
 

Let `c_1` and `c_2` be the `y`-intercepts of equations (1) and (2)

then `c_1 =\frac{-k-4}{5}`  and  `c_2 =-\frac{1}{k+8}`
 

`\therefore \frac{-k-4}{5}=-\frac{1}{k+8}`

`(k+4)(k+8)` `=5`  
`k^2+12 k+27` `=0`  
`(k+3)(k+9)` `=0`  
`k=-3 \text {, }`  `k=-9`  

 
`\therefore k=-3` for infinite solutions and only value to satisfy both equations.


♦ Mean mark 50%.
MARKER’S COMMENT: Students are reminded to always use the correct variables.

Filed Under: Simultaneous Equations Tagged With: Band 5, smc-721-20-Infinite solutions

Algebra, MET2-NHT 2019 VCAA 8 MC

The simultaneous linear equations  `2y + (m - 1) x = 2`  and  `my + 3x = k`  have infinitely many solutions for

  1.  `m = 3`  and  `k = –2`
  2.  `m = 3`  and  `k = 2`
  3.  `m = 3`  and  `k = 4`
  4.  `m = –2`  and  `k = –2`
  5.  `m = –2`  and  `k = 3`
Show Answers Only

`D`

Show Worked Solution
`2y + (m – 1)x` `= 2\ \ =>\ \ y= -((m-1)/(2)) x + 1`
`my + 3x` `= k\ \ =>\ \ y=-(3)/(m) x + (k)/(m)`

 

`text(Infinite solutions) \ => \ text(gradients and y-intercepts equal)`

`(m – 1)/(2)` `= (3)/(m)`
`m^2 – m – 6` `= 0`
`(m – 3)(m + 2)` `= 0`

 
`m = 3 \ \ text(or)\ \ –2`
 

`text(If) \ \ m = 3 ,`

`(k)/(3) = 1 \ => \ k = 3`
 
`text(If) \ \ m = –2,`

`(k)/(–2) = 1 \ => \ k = –2`
 

`=> \ D`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-721-20-Infinite solutions

Algebra, MET2 2008 VCAA 6 MC

The simultaneous linear equations

`ax + 3y = 0`

`2x + (a + 1)y = 0`

where `a` is a real constant, have infinitely many solutions for

  1. `a in R`
  2. `a in\ text({−3, 2})`
  3. `a in R\ text(\ {−3, 2})`
  4. `a in\ text({−2, 3})`
  5. `a in R\ text(\ {−2, 3})`
Show Answers Only

`B`

Show Worked Solution

`text(Infinite solution:)`

♦ Mean mark 45%.
`m_1` `= m_2` `and` `c_1` `= c_2`
`a/2` `= 3/(a + 1)`   `text(always true as both)`
`a` `= – 3, 2`   `text(lines have)\ y text(-int) = 0`

 
`=>   B`

Filed Under: Simultaneous Equations Tagged With: Band 5, smc-721-20-Infinite solutions

Algebra, MET2 2010 VCAA 7 MC

The simultaneous linear equations  `(m - 1) x + 5y = 7  and  3x + (m - 3) y = 0.7 m`  have infinitely many solutions for

  1. `m in R text(\{0, −2})`
  2. `m in R text(\{0})`
  3. `m in R text(\{6})`
  4. `m = 6`
  5. `m = – 2`
Show Answers Only

`D`

Show Worked Solution

`text(Infinite solutions occur when:)`

`->\ text(same gradient and same)\ \ y text(-intercept)`

`(m_1 – 1) x + 5y_1` `=7`
`y_1` `=- (m_1 – 1)/5 x+ 7/5`
`3x + (m_2 – 3) y_2` `= 0.7m`
`y_2` `=- 3/(m_2 – 3)x +(0.7m)/(m_2 – 3)`
   

`text(Gradients equal when,)`

♦ Mean mark 47%.
`- (m – 1)/5` `= – 3/(m – 3)`
`m^2-4m+3` `=15`
`(m-6)(m+2)` `=0`

`m = – 2 or m = 6`
 

`text(Coefficients equal when:)`

`7/5` `=(0.7m)/(m – 3)`
`7m – 21` `= 3.5m`
`3.5m` `=21`
`m` `=6`

 
`=>   D`

Filed Under: Simultaneous Equations Tagged With: Band 5, smc-721-20-Infinite solutions

Algebra, MET1 2011 VCAA 6

Consider the simultaneous linear equations

`kx - 3y` `= k + 3`
`4x + (k + 7) y` `= 1`

where `k` is a real constant.

  1. Find the value of `k` for which there are infinitely many solutions.  (3 marks)
  2. Find the values of `k` for which there is a unique solution.  (1 mark)
Show Answers Only
  1. `– 4`
  2. `k in R\ text(\)\ {– 4, – 3}`
Show Worked Solution

a.   `text(Infinite solutions if gradients and)`

♦ Mean mark 39%.
MARKER’S COMMENT: A number of solutions are possible here, including using the determinant.

`y text(-intercepts are the same.)`

`kx-3y` `=k+3`
`3y` `=kx-k-3`
`y` `=k/3 x – (k+3)/3`
`:.m_1=k/3 and c_1= -((k+3)/3)`

 

`4x + (k + 7) y` `=1`
`y` `=((-4)/(k+7)) x + 1/(k+7)`
`:. m_2=(-4)/(k+7) and c_2=1/(k+7)`
   

 

`text(Equating gradients and)\ y text(-intercepts:)`

`m_1` `= m_2` `\ \ \ and` `\ \ \ c_1` `=c_2`
`k/3` `= (– 4)/(k + 7)`   `-((k+3)/3)` `= 1/(k+7)`
`k^2 + 7k` `= – 12`   `-(k+3)(k+7)` `=3`
`k^2 + 7k + 12` `= 0`   `k^2+10k+24` `=0`
`(k + 3) (k + 4)` `= 0`   `(k+6)(k+4)` `= 0`
`k` `= – 3, – 4`   `k`  `= – 6, – 4`

 

`:. k = – 4\ \ \ text{(satisfies both)}`

 

b.   `text(Unique solution if:)`

♦♦ Mean mark 33%.

`m_1 != m_2`

`:. k in R\ text(\)\ {– 4, – 3}`

Filed Under: Simultaneous Equations Tagged With: Band 5, smc-721-10-Unique solution, smc-721-20-Infinite solutions

Copyright © 2014–2025 SmarterEd.com.au · Log in