Given that `tan(alpha) = d`, where `d > 0` and `0 < alpha < pi/2`, the sum of the solutions to `tan (2x) = d`, where `0 < x < (5 pi)/4`, in terms of `alpha` is
- `0`
- `2 alpha`
- `pi + 2 alpha`
- `pi/2 + alpha`
- `(3 (pi + alpha))/2`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given that `tan(alpha) = d`, where `d > 0` and `0 < alpha < pi/2`, the sum of the solutions to `tan (2x) = d`, where `0 < x < (5 pi)/4`, in terms of `alpha` is
`E`
`tan(alpha) = tan(2x) = d`
`text(Period of)\ \ tan alpha = pi`
`2x = alpha, quad alpha + pi, quad alpha + 2 pi`
`x = alpha/2, quad (alpha + pi)/2, quad (alpha + 2 pi)/2`
`text(Given)\ \ 0 < alpha < pi/2, => (alpha + 2 pi)/2 < (5 pi)/4`
`:. sum text(solutions)` | `= alpha/2 + (alpha + pi)/2 + (alpha + 2 pi)/2` |
`= (3 (pi + alpha))/2` |
`=> E`
Solve the equation `tan (2x) = sqrt 3` for `x in (– pi/4, pi/4) uu (pi/4, (3 pi)/4).` (3 marks)
`:. x = pi/6, (2 pi)/3`
`tan (2x) = sqrt 3`
`=>\ text(Base angle)\ = pi/3`
`2x` | `= pi/3, (4pi)/3, (-2pi)/3, …` |
`:.x` | `= pi/6 + (2pi)/3, (-pi)/3, …` |
`=pi/6 or (2 pi)/3,\ \ \ \ x in (– pi/4, pi/4) uu (pi/4, (3 pi)/4)` |