Let `cos (x) = 3/5` and `sin^2(y) = 25/169`, where `x ∈ [{3pi}/{2} , 2 pi]` and `y ∈ [{3pi}/{2} , 2 pi]`.
The value of `sin(x) + cos(y)` is
- `8/65`
- `– 112/65`
- `112/65`
- `–8/65`
- `64/65`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `cos (x) = 3/5` and `sin^2(y) = 25/169`, where `x ∈ [{3pi}/{2} , 2 pi]` and `y ∈ [{3pi}/{2} , 2 pi]`.
The value of `sin(x) + cos(y)` is
`A`
`text{Both angles are in 4th quadrant (given)}`
`cos(x) = 3/5`
`sin(x)` | `= – 4/5\ \ text{(4th quadrant)}` |
`sin^2(y)` | `= 25/169` |
`sin(y)` | `= – 5/13\ \ text{(4th quadrant)}` |
`cos(y) = 12/13`
`:. \ sin(x) + cos(y)` | `= – 4/5 + 12/13` |
`= 8/65` |
`=> A`
Solve the equation `sqrt 3 sin (x) = cos (x)` for `x in [– pi, pi]`. (2 marks)
`x = pi/6,\ \ \ – (5 pi)/6`
`text(Divide both sides by)\ \ cos(x) :`
`sqrt 3 sin x` | `=cos x` |
`sqrt 3 tan x` | `= 1` |
`tan x` | `= 1/sqrt 3` |
`=>\ text(Base angle)\ = pi/6` |
`:. x = pi/6\ \ text(or)\ \ – (5 pi)/6,\ \ \ x in [– pi, pi].`
Let `(tan(theta) - 1) (sin (theta) - sqrt 3 cos (theta)) (sin (theta) + sqrt 3 cos(theta)) = 0`.
a. `(tan(theta) – 1) (sin (theta) – sqrt 3 cos (theta)) (sin (theta) + sqrt 3 cos(theta)) = 0`
`=> tan theta = 1`
`=>sin theta – sqrt 3 cos theta` | `=0` |
`sin theta` | `=sqrt3 cos theta` |
`tan theta` | `=sqrt3` |
`=>sin theta + sqrt 3 cos theta` | `=0` |
`sin theta` | `=-sqrt3 cos theta` |
`tan theta` | `=-sqrt3` |
`:. tan theta = 1 or tan theta = +- sqrt 3`
b. `(tan (theta) – 1) (sin^2 (theta) – 3 cos^2 (theta)) = 0`
`text(Using part a:)`
`(tan theta – 1) (sin theta – sqrt 3 cos theta) (sin theta + sqrt 3 cos theta) = 0`
`=> tan theta` | `= 1` | `qquad or qquad` | `tan theta` | `= +- sqrt 3` |
`theta` | `= pi/4` | `theta` | `= pi/3, (2 pi)/3\ \ text(for)\ \ theta ∈ [0, pi]` |
`:. theta = pi/4, pi/3 or (2 pi)/3`