Let \(f(x)=\log_{e}x\), where \(x>0\) and \(g(x)=\sqrt{1-x}\), where \(x<1\).
The domain of the derivative of \((f\circ g)(x)\) is
- \(x\in R\)
- \(x\in (-\infty, 1]\)
- \(x\in (-\infty, 1)\)
- \(x\in (0, \infty)\)
- \(x\in (0, 1)\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let \(f(x)=\log_{e}x\), where \(x>0\) and \(g(x)=\sqrt{1-x}\), where \(x<1\).
The domain of the derivative of \((f\circ g)(x)\) is
\(C\)
\(\text{Given }f(x)=\log_{e}x\ \ \text{and}\ \ g(x)=\sqrt{1-x}\)
\((f\circ g)(x)=\log_{e}\sqrt{1-x}=\dfrac{1}{2}\log_{e}(1-x)\)
\((f\circ g)^{′}(x)=\dfrac{1}{2}\times\dfrac{-1}{1-x}=\dfrac{1}{2(x-1)}\ \text{ where}\ \ x<1\)
\(\Rightarrow C\)
If `f(x)=e^(g(x^(2)))`, where `g` is a differentiable function, then `f^(')(x)` is equal to
`C`
`f(x)=e^(g(x^2))`
`text{Using the chain rule (twice):}`
`f^{‘}(x)` | `=d/dx[g(x^2)] * e^(g(x^2))` | |
`=2x*g^{‘}(x^2)*e^(g(x^2))` |
`=> C`