If `f(x)=e^(g(x^(2)))`, where `g` is a differentiable function, then `f^(')(x)` is equal to
- `2xe^(g(x^(2)))`
- `2xg(x^(2))e^(g(x^(2)))`
- `2xg^(')(x^(2))e^(g(x^(2))`
- `2xg^(')(2x)e^(g(x^(2)))`
- `2xg^(')(x^(2))e^(g(2x))`
Aussie Maths & Science Teachers: Save your time with SmarterEd
If `f(x)=e^(g(x^(2)))`, where `g` is a differentiable function, then `f^(')(x)` is equal to
`C`
`f(x)=e^(g(x^2))`
`text{Using the chain rule (twice):}`
| `f^{‘}(x)` | `=d/dx[g(x^2)] * e^(g(x^2))` | |
| `=2x*g^{‘}(x^2)*e^(g(x^2))` |
`=> C`
Differentiate `y = 2e^(-3x)` with respect to `x`. (1 mark)
--- 3 WORK AREA LINES (style=lined) ---
`-6e^(-3x)`
| `y` | `=2e^(-3x)` | |
| `dy/dx` | `=-3 xx 2e^(-3x)` | |
| `=-6e^(-3x)` |
Let `f(x) = e^(x^2)`.
Find `f^{\prime} (3)`. (3 marks)
--- 4 WORK AREA LINES (style=lined) ---
`6e^9`
`text(Using Chain Rule:)`
| `f^{\prime} (x)` | `= 2xe^(x^2)` |
| `f^{\prime} (3)` | `= 2 (3) e^((3)^2)` |
| `= 6e^9` |
For `f(x) = log_e (x^2 + 1)`, find `f^{\prime}(2)`. (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
`4/5`
`text(Using Chain Rule:)`
| `f ^{\prime}(x)` | `= (2x)/(x^2 + 1)` |
| `:. f ^{\prime}(2)` | `= (2(2))/(2^2 + 1)` |
| `= 4/5` |
Evaluate `f^{\prime}(1)`, where `f: R -> R, \ f(x) = e^(x^2-x + 3)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`e^3`
| `f(x)` | `= e^(x^2-x + 3)` |
| `f^{\prime}(x)` | `= (2x-1)e^(x^2-x + 3)` |
| `f^{\prime}(1)` | `= (2-1)e^(1-1 + 3)` |
| `= e^3` |
Let `f(x) = xe^(3x)`. Evaluate `f^{prime}(0)`. (3 marks)
--- 4 WORK AREA LINES (style=lined) ---
`1`
`text(Using Product Rule:)`
`(gh)^{prime} = g^{prime}h + gh^{prime}`
| `f^{prime}(x)` | `= x(3e^(3x)) + 1 xx e^(3x)` |
| `:.f^{prime}(0)` | `= 0 + e^0` |
| `= 1` |
Differentiate `(e^x + x)^5`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`5(e^x + 1)(e^x + x)^4`
| `y` | `= (e^5 + x)^5` |
| `(dy)/(dx)` | `= 5(e^x + x)^4 xx d/(dx)(e^x + x)` |
| `= 5(e^x + x)^4 xx (e^x + 1)` | |
| `= 5(e^x + 1)(e^x + x)^4` |
The derivative of `log_e(2f(x))` with respect to `x` is
`A`
`text(Chain Rule:)`
| `text(If)\ \ h(x)` | `= f(g(x))` |
| `h′(x)` | `= f′(g(x)) xx g′(x)` |
| `d/(dx)(log_e(2f(x)))` | `= 1/(2f(x)) xx 2f′(x)` |
| `= (f′(x))/(f(x))` |
`=> A`
Let `g(x) = log_e(tan(x))`. Evaluate `g^{prime}(pi/4)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`g^{prime}(pi/4) = 2`
`g(x) = log_e (tan(x))`
`text(Using Chain Rule:)`
`g^{prime}(x) = (sec^2(x))/(tan(x))`
`text(When)\ \ x = pi/4,`
| `g^{prime}(pi/4)` | `= (sec^2(pi/4))/(tan (pi/4))` |
| `=1/(1/sqrt2)^2` | |
| `=1/(1/2)` | |
| `=2` |