Let `g(x) = (2-x^3)^3`.
Evaluate `g^{\prime}(1)`. (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `g(x) = (2-x^3)^3`.
Evaluate `g^{\prime}(1)`. (2 marks)
`g^{\prime}(1) = -9`
`text(Using Chain Rule:)`
`g^{\prime}(x)` | `= 3 (2-x^3)^2 (-3x^2)` |
`= -9x^2 (2-x^3)^2` | |
`:. g^{\prime}(1)` | `= -9 (1) (2-1)^2` |
`= -9` |
Let `f: (1/3, oo) -> R,\ \ f(x) = 1/(3x - 1)`.
Find `f prime(x)`. (1 mark)
`(-3)/(3x – 1)^2`
`f(x)` | `= (3x – 1)^(-1)` | |
`f′(x)` | `= -1 xx 3xx (3x – 1)^(-2)` | |
`= (-3)/(3x – 1)^2` |
If `y = (−3x^3 + x^2 - 64)^3`, find `(dy)/(dx)`. (1 mark)
`3(−3x^3 + x^2 – 64)^2 · (−9x^2 + 2x)`
MARKER’S COMMENT: Poor use use brackets was notable.
`y` | `= (−3x^3 + x^2 – 64)^3` |
`(dy)/(dx)` | `= 3(−3x^3 + x^2 – 64)^2 · (−9x^2 + 2x)` |
If `f(x) = sqrt(x^2 + 3)`, find `f^{′}(1)`. (3 marks)
`1/2`
`text(Using Chain Rule:)`
`f^{′}(x)` | `= 1/2(x^2 + 3)^(-1/2) xx 2x` |
`f^{′}(x)` | `= x/(sqrt(x^2 + 3))` |
`:. f^{′}(1)` | `=1/(sqrt(1+3))` |
`=1/2` |
For `y = sqrt (1 - f(x)),\ \ (dy)/(dx)` is equal to
A. `(2 f prime (x))/(sqrt(1 - f(x))`
B. `(-1)/(2 sqrt (1 - f prime (x)))`
C. `1/2 sqrt (1 - f prime (x))`
D. `3/(2(1 - f prime(x)))`
E. `(-f prime (x))/(2 sqrt (1 - f (x)))`
`E`
`text(Using Chain Rule,)`
`dy/dx` | `= – f′(x) xx 1/2 xx (1-f(x))^(- 1/2)` |
`=(- f′(x))/(2 sqrt (1 – f (x)))` |
`=> E`
Let `y = (3x^2 - 5x)^5`. Find `(dy)/(dx)`. (2 marks)
`5(3x^2 – 5x)^4(6x – 5)`
`text(Using Chain Rule:)`
`(dy)/(dx) = 5(3x^2 – 5x)^4(6x – 5)`
Differentiate `sqrt (4 - x)` with respect to `x.` (1 mark)
`(dy)/(dx) = (– 1)/(2 sqrt (4 – x))`
`text(Using the Chain Rule:)`
`text(Let)\ \ y` | `= (4 – x)^(1/2)` |
`:. (dy)/(dx)` | `= 1/2 (4 – x)^(-1/2) (- 1)` |
`= (– 1)/(2 sqrt (4 – x))` |
If `y = (x^2 - 5x)^4`, find `(dy)/(dx).` (1 mark)
`4(x^2 – 5x)^3 (2x – 5)`
`text(Using Chain Rule:)`
`(dy)/(dx) = 4 (x^2 – 5x)^3 (2x – 5)`
Let `y = (5x + 1)^7`.
Find `(dy)/(dx)`. (1 mark)
`35(5x + 1)^6`
`text(Using Chain Rule:)`
`(dy)/(dx)` | `= 7(5x + 1)^6 xx 5` |
`= 35(5x + 1)^6` |