Find an antiderivative of `int 1 + e^(7x)` with respect to `x`. (1 mark)
Calculus, MET1 2013 ADV 11e
Find `int e^(4x + 1) dx` (2 marks)
Calculus, MET2 2016 VCAA 9 MC
Given that `(d(xe^(kx)))/(dx) = (kx + 1)e^(kx)`, then `int xe^(kx) dx` is equal to
- `(xe^(kx))/(kx + 1) + c`
- `((kx + 1)/k)e^(kx) + c`
- `1/k int e^(kx) dx`
- `1/k (xe^(kx) - int e^(kx) dx) + c`
- `1/k^2 (xe^(kx) - e^(kx)) + c`