Find an antiderivative of `int 1 + e^(7x)` with respect to `x`. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find an antiderivative of `int 1 + e^(7x)` with respect to `x`. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
`x + 1/7 e^(7x) + c`
`int 1 + e^(7x)\ dx = x + 1/7 e^(7x) + c`
Find `int e^(4x + 1) dx` (2 marks)
--- 2 WORK AREA LINES (style=lined) ---
`1/4 e^(4x + 1) + c`
`int e^(4x + 1) dx = 1/4 e^(4x + 1) + c`
Given that `(d(xe^(kx)))/(dx) = (kx + 1)e^(kx)`, then `int xe^(kx) dx` is equal to
`D`
| `int (kx + 1)e^(kx) dx` | `= xe^(kx) + c_1` |
| `k int xe^(kx) dx + int e^(kx) dx` | `= xe^(kx) + c_1` |
| `k int xe^(kx) dx` | `= xe^(kx) – int e^(kx) dx + c_1` |
| `:. int xe^(kx) dx` | `= 1/k (xe^(kx) – int e^(kx) dx) + c` |
`=> D`