Let `p(x)=x^{3}-2 a x^{2}+x-1`, where `a \in R`. When `p` is divided by `x+2`, the remainder is 5.
The value of `a` is
- `\ \ \ \ 2`
- `- 7/4`
- `\ \ \ 1/2`
- `- 3/2`
- `-2`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `p(x)=x^{3}-2 a x^{2}+x-1`, where `a \in R`. When `p` is divided by `x+2`, the remainder is 5.
The value of `a` is
`E`
| `P(-2)` | `=5` | |
| `5` | `=(-2)^3-2a(-2)^2-2-1` | |
| `5` | `=-8-8a-2-1` | |
| `8a` | `=-16` | |
| `:.a` | `=-2` |
`=>E`
The polynomial `p(x) = x^3-ax + b` has a remainder of 2 when divided by `(x-1)` and a remainder of 5 when divided by `(x + 2)`.
Find the values of `a` and `b`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
| `a` | `= 4` |
| `b` | `= 5` |
| `p(x)` | `= x^3-ax + b` |
| `P(1)` | `= 2` |
| `1-a + b` | `= 2` |
| `b` | `= a+1\ \ \ …\ text{(1)}` |
| `P (-2)` | `= 5` |
| `-8 + 2a + b` | `= 5` |
| `2a + b` | `= 13\ \ \ …\ text{(2)}` |
`text(Substitute)\ \ b = a+1\ \ text(into)\ \ text{(2)}`
| `2a + a+1` | `= 13` |
| `3a` | `= 12` |
| `:. a` | `= 4` |
| `:. b` | `= 5` |
The graph of `P(x) = x^2 + ax + b` cuts the `x`-axis when `x=2.` When `P(x)` is divided by `x + 1`, the remainder is 18.
Find the values of `a` and `b`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`a = -7\ \ text(and)\ \ b = 10`
`P(x) = x^2 + ax + b`
`text(S)text(ince the graph cuts the)\ xtext(-axis at)\ \ x = 2,`
| `P(2)` | `=0` | |
| `2^2 + 2a + b` | `= 0` | |
| `2a + b` | `= -4` | `…\ (1)` |
`P(-1) = 18,`
| `(-1)^2-a + b` | `= 18` | |
| `-a + b` | `= 17` | `…\ (2)` |
`text(Subtract)\ \ (1) − (2),`
| `3a` | `= -21` |
| `a` | `= -7` |
`text(Substitute)\ \ a = -7\ \ text{into (1),}`
| `2(-7) + b` | `= -4` |
| `b` | `= 10` |
`:.a = -7\ \ text(and)\ \ b = 10`
For the polynomial `P(x) = x^3 − ax + 4,\ \ P( – 3) = – 5.`
The value of `a` is
A. `− 12`
B. `− 5`
C. `– 3`
D. `3`
E. `6`
`E`
| `(-3)^3 -a(-3)+4` | `= -5` |
| `-27+3a+4` | `= -5` |
| `3a` | `=18` |
| `a` | `= 6` |
`⇒ E`