The average value of the function with rule `f(x) = log_e (3x + 1)` over the interval `[0, 2]` is
- `(log_e(7))/2`
- `log_e(7)`
- `(7 log_e (7))/3 - 2`
- `(7 log_e (7) - 6)/6`
- `(35 log_e(7) - 12)/18`
Aussie Maths & Science Teachers: Save your time with SmarterEd
The average value of the function with rule `f(x) = log_e (3x + 1)` over the interval `[0, 2]` is
`D`
`y_text(avg)` | `= 1/(2 – 0) int_0^2 log_e (3x + 1)\ dx` |
`= (7 log_e(7) – 6)/6` |
`=> D`
The average value of the function `f(x) = e^(2x) cos (3x)` for `0 <= x <= pi` is closest to
A. `– 82.5`
B. `26.3`
C. `– 26.3`
D. `– 274.7`
E. `pi`
`C`
`y_text(avg)` | `= 1/(pi – 0) int_0^pi e^(2x) cos (3x)\ dx` |
`~~ – 26.3` |
`=> C`
The average value of the function with rule `f(x) = log_e(x + 2)` over the interval `[0,3]` is
`=> E`
`y_text(avg)` | `= 1/(3 – 0) int_0^3 log_e(x + 2)\ dx` |
`= (5log_e(5) – 2log_e(2) – 3)/3` |
`=> E`