The function \(f: R \rightarrow R\) has an average value \(k\) on the interval \([0,2]\) and satisfies \(f(x)=f(x+2)\) for all \(x \in R\). The value of the definite integral \( {\displaystyle \int_2^6 f(x) d x } \) is
- \(2k\)
- \(3k\)
- \(4k\)
- \(6k\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
The function \(f: R \rightarrow R\) has an average value \(k\) on the interval \([0,2]\) and satisfies \(f(x)=f(x+2)\) for all \(x \in R\). The value of the definite integral \( {\displaystyle \int_2^6 f(x) d x } \) is
\(C\)
\(\text{The function }f(x)\ \text{is a periodic function}\ \rightarrow\ \text{Period}=2\)
\(\text{Average value}\ \rightarrow\ k\) | \(=\dfrac{1}{2}\displaystyle\int_0^2 f(x)\, dx\) |
\(2k\) | \(=\displaystyle\int_0^2 f(x)\, dx\) |
\(\text{As function is periodic the average value remains the same}\ \rightarrow\ k,\text{for each period.}\)
\(\therefore\ \displaystyle\int_2^6 f(x)\, dx\) | \(=2\times\displaystyle\int_0^2 f(x)\, dx\) |
\(=2\times 2k=4k\) |
\(\Rightarrow C\)
Part of the graph of a function `f`, where `a>0`, is shown below.
The average value of the function `f` over the interval `[2a, a]` is
`B`
`text(Average Value)`
`=(1)/(a-(-2a))int_(-2a)^(a)f(x)\ dx`
`=(1)/(3a)(int_(-2a)^(0)(-(3)/(2)x-a)\ dx+int_(0)^(a)(2x-a)\ dx)`
`=(a)/(3)`
`=>B`
The average value of the function `f: R\ text(\){text(−)1/2} -> R,\ f(x) = 1/(2x + 1)` over the interval `[0, k]` is `1/6 log_e (7).`
The value of `k` is
`B`
`text(Solve:)\ \ 1/(k-0) int_0^k 1/(2x + 1)\ dx` | `= 1/6 log_e (7)` |
`text(for)\ \ k` | `> 0` |
`:. k = 3`
`=> B`