What is the solution of the equation `log _a x^3=b`, where a and b are positive constants?
- `x=b^(a/3)`
- `x=a^(b/3)`
- `x=b^a/3`
- `x=a^b/3`
Aussie Maths & Science Teachers: Save your time with SmarterEd
What is the solution of the equation `log _a x^3=b`, where a and b are positive constants?
`B`
`log_a x^3` | `=b` | |
`3log_a x` | `=b` | |
`log_a x` | `=b/3` | |
`:.x` | `=a^(b/3)` |
`=>B`
Find `x` given `100^(x-2) = 1000^x`. (2 marks)
`-4`
`100^(x-2)` | `= 1000^x` |
`(10^2)^(x-2)` | `= (10^3)^x` |
`10^(2x-4)` | `= (10)^(3x)` |
`2x-4` | `=3x` |
`:. x` | `= -4` |
Which of the following is equal to `(log_2 9)/(log_2 3)`?
`A`
`(log_2 9)/(log_2 3)` | `= (log_2 3^2)/(log_2 3)` |
`= (2 log_2 3)/(log_2 3)` | |
`= 2` |
`=> A`
If `f(x) = 3 log_e (2x),` and `f(5x) = log_e (y),`
then `y` is equal to
`D`
`f(5x)` | `= 3 log_e (2(5x))` |
`log_e (y)` | `= 3 log_e (10 x)` |
`= log_e (10x)^3` | |
`y` | `= 1000 x^3` |
`=> D`
Write `log 2 + log 4 + log 8 + … + log 512` in the form `a log b` where `a` and `b` are integers greater than `1.` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`45 log 2`
`log 2 + log 4 + log 8 + … + log 512`
`= log 2^1 + log 2^2 + log2^3 + … + log 2^9`
`= log 2 + 2 log 2 + 3 log 2 + … + 9 log 2`
`= 45 log 2`
Let `a=e^x`
Which expression is equal to `log_e(a^2)`?
`C`
`log_e(a^2)` | `=log_e(e^x)^2` |
`=log_e(e^(2x))` | |
`=2xlog_ee` | |
`=2x` |
`=> C`
What is the solution of `5^x=4`?
`C`
`5^x` | `=4` |
`log_2 5^x` | `=log_2 4` |
`x log_2 5` | `=log_2 4` |
`:.x` | `=(log_2 4)/(log_2 5)` |
`=>C`