What is the solution of the equation `log _a x^3=b`, where a and b are positive constants?
- `x=b^(a/3)`
- `x=a^(b/3)`
- `x=b^a/3`
- `x=a^b/3`
Aussie Maths & Science Teachers: Save your time with SmarterEd
What is the solution of the equation `log _a x^3=b`, where a and b are positive constants?
`B`
`log_a x^3` | `=b` | |
`3log_a x` | `=b` | |
`log_a x` | `=b/3` | |
`:.x` | `=a^(b/3)` |
`=>B`
Solve `e^(2 ln x) = x + 6` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x = 3 or -2`
♦ Mean mark 47%.
`e^(2 ln x)` | `= x + 6` |
`ln e^(2 ln x)` | `= ln (x + 6)` |
`2 ln x` | `= ln (x + 6)` |
`ln x^2` | `= ln (x + 6)` |
`x^2` | `= x + 6` |
`x^2 – x – 6` | `= 0` |
`(x – 3) (x + 2)` | `= 0` |
`:. x = 3 \ \ (x>0)`
If `y = log_a (7x - b) + 3`, then `x` is equal to
`C`
`y – 3` | `= log_a (7x – b)` |
`a^(y – 3)` | `= 7x – b` |
`a^(y – 3) + b` | `= 7x` |
`:. x` | `= 1/7 (a^(y – 3) + b)` |
`=> C`
What is the solution to the equation `log_2(x-1) = 8`?
`D`
`log_2 (x-1)` | `= 8` |
`x-1` | `= 2^8` |
`x` | `= 257` |
`=> D`
Solve `log_e x-3/log_ex=2` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x=e^3\ \ text(or)\ \ e^-1`
`log_e x-3/(log_ex)` | `=2` |
`(log_ex)^2-3` | `=2log_e x` |
`(log_ex)^2-2log_ex-3` | `=0` |
`text(Let)\ X=log_ex` | |
`:.\ X^2-2X-3` | `=0` |
`(X-3)(X+1)` | `=0` |
`X` | `=3` | `\ \ \ \ \ \ \ \ \ \ ` | `X` | `=-1` |
`log_ex` | `=3` | `\ \ \ \ \ \ \ \ \ \ ` | `log_ex` | `=-1` |
`x` | `=e^3` | `\ \ \ \ \ \ \ \ \ \ ` | `x` | `=e^-1` |
`:.x=e^3\ \ text(or)\ \ e^-1`
Solve the equation `lnx=2`. Give you answer correct to four decimal places. (2 marks)
`7.3891`
`ln x` | `=2` |
`log_e x` | `=2` |
`x` | `=e^2` |
`=7.38905…` | |
`=7.3891\ \ text{(to 4 d.p.)}` |