Let \(y=\dfrac{x^2-x}{e^x}\).
Find and simplify \(\dfrac{dy}{dx}\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let \(y=\dfrac{x^2-x}{e^x}\).
Find and simplify \(\dfrac{dy}{dx}\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(\dfrac{-x^2+3x-1}{e^x}\)
\(\text{Using the quotient rule:}\)
\(\dfrac{dy}{dx}\) | \(=\dfrac{e^x(2x-1)-(x^2-x)e^x}{(e^x)^2}\) |
\(=\dfrac{e^x(-x^2+3x-1)}{e^{2x}}\) | |
\(=\dfrac{-x^2+3x-1}{e^x}\) |
What is `int e + e^(3x)\ dx`?
`B`
`int e + e^(3x) = ex + 1/3e^(3x) + c`
`(text(Note)\ e\ text(is a simple constant here))`
`=> B`
Find `int 1 + e^(7x)\ dx`. (2 marks)
`x + 1 /7 e^(7x) + c`
`int 1 + e^(7x) \ dx = x + 1/7 e^(7x) + c`
Which expression is equal to `int e^(2x)\ dx`?
`C`
`int e^(2x)\ dx`
`= 1/2 e^(2x) + C`
`=> C`
Find `inte^(4x+1)dx` (2 marks)
`1/4e^(4x+1)+C`
`inte^(4x+1)\ dx=1/4e^(4x+1)+C`