Given the function \(f(x)=\log _{10} x^x\), which of the following expressions is equal to \(f^{\prime}(x)\) ?
- \(\log _e 10+\log _e x\)
- \(\dfrac{\log _e 10+1}{\log _e 10}\)
- \(\dfrac{1}{\log _e 10}+\log _x 10\)
- \(\dfrac{1}{\log _e x}+\log _{10} x\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given the function \(f(x)=\log _{10} x^x\), which of the following expressions is equal to \(f^{\prime}(x)\) ?
\(\Rightarrow B\)
\(f(x)=\log _{10} x^x=x \log _{10} x\)
\(\text{Using product rule:}\)
| \(f^{\prime}(x)\) | \(=x \cdot \dfrac{1}{x \cdot \ln 10}+1 \cdot \log _{10} x\) |
| \(=\dfrac{1}{\ln 10}+\log _{10} x\) | |
| \(=\dfrac{1}{\ln 10}+\dfrac{\ln x}{\ln 10}\) | |
| \(=\dfrac{\ln x+1}{\ln 10}\) |
\(\Rightarrow B\)
Let \(y=e^x \cos\,3 x\). Find \(\dfrac{d y}{d x}\) (1 mark) \(e^x (\cos(3x)-3\sin(3x))\)
\(y\)
\(=e^x \cos(3x)\)
\(\dfrac{dy}{dx}\)
\(=e^x.(-3\sin(3x))+\cos(3x).e^x\)
\(=e^x(\cos(3x)-3\sin(3x))\)
If `f(x)=log_2(x^(2x))`, which expression is equal to `f^(′)(x)`?
`B`
| `f(x)` | `=log_2(x^(2x))` | |
| `=2x log_2x` | ||
| `=(2x lnx)/ln2` |
| `f^(′)(x)` | `=1/ln2 (2x*1/x + 2lnx)` | |
| `=2/ln2 + (2lnx)/ln2` | ||
| `=2/ln2 + 2log_2x` |
`=> B`
Let `y= (x + 5) log_e (x)`.
Find `(dy)/(dx)` when `x = 5`. (2 marks)
`log_e 5 +2`
| `(dy)/(dx)` | `= 1 xx log_e x + (x + 5) * (1)/(x)` |
| `= log_e x + (x + 5)/(x)` |
`:. dy/dx|_(x=5)=log_e 5 +2`
Differentiate `5^(x^2)5x`. (2 marks)
`5^(x^2 + 1)(ln5*2x^2 + 1)`
| `y` | `= 5^(x^2) * 5x` |
| `(dy)/(dx)` | `= ln5*2x*5^(x^2)*5x + 5^(x^2)*5` |
| `=5^(x^2)(ln5*10x^2 + 5)` | |
| `=5^(x^2 + 1)(ln5*2x^2 + 1)` |
Differentiate `3x 6^x`. (2 marks)
`3*6^x(xln6 +1)`
| `y` | `= 3x * 6^x` |
| `(dy)/(dx)` | `= 3*6^x + ln6 * 6^x *3x` |
| `= 3*6^x(1 + xln6)` |
Differentiate `x^3 ln x`. (2 marks)
`x^2 (3 ln\ x + 1)`
`y = x^3 ln\ x`
`text(Using the product rule:)`
| `(dy)/(dx)` | `= 3x^2 * ln\ x + x^3 * 1/x` |
| `= x^2 (3 ln\ x + 1)` |
Differentiate `y = (x + 4) ln\ x`. (2 marks)
`ln\x + 4/x +1`
`y = (x + 4) ln\ x`
`text(Using the product rule)`
| `(dy)/(dx)` | `= d/(dx) (x + 4) * ln x + (x + 4) d/(dx) ln\ x` |
| `= ln x + (x + 4) 1/x` | |
| `= ln x + 4/x + 1` |
Differentiate with respect to `x`:
`x^2 log_e x` (2 marks)
`x + 2x log_e x`
| `y` | `= x^2 log_e x` |
| `dy/dx` | `= x^2 * 1/x + 2x * log_e x` |
| `= x + 2x log_e x` |
Differentiate with respect to `x`
`(x-1)log_ex` (2 marks)
`log_ex+1-1/x`
| `y` | `=(x-1)log_ex` |
| `dy/dx` | `=1(log_ex)+(x-1)1/x` |
| `=log_ex+1-1/x` |
Differentiate `x^2e^x` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`xe^x(x+2)`
`text{Using the product rule}`
| `text(Let)\ \ u=x^2,` | `\ \ \ \ \ \ u^{\prime}=2x` |
| `text(Let)\ \ v=e^x,` | `\ \ \ \ \ \ v^{\prime}=e^x` |
| `{d(uv)}/dx` | `=u prime v+v prime u` |
| `=2x e^x +x^2 e^x ` | |
| `=xe^x(x+2)` |