If `f(x)=log_2(x^(2x))`, which expression is equal to `f^(′)(x)`?
- `2/(x^(2x)ln2`
- `2/ln2 + 2log_2x`
- `log_2x+2/ln2`
- `2/ln2 xx log_2(x^(2x-1))`
Aussie Maths & Science Teachers: Save your time with SmarterEd
If `f(x)=log_2(x^(2x))`, which expression is equal to `f^(′)(x)`?
`B`
`f(x)` | `=log_2(x^(2x))` | |
`=2x log_2x` | ||
`=(2x lnx)/ln2` |
`f^(′)(x)` | `=1/ln2 (2x*1/x + 2lnx)` | |
`=2/ln2 + (2lnx)/ln2` | ||
`=2/ln2 + 2log_2x` |
`=> B`
Let `y= (x + 5) log_e (x)`.
Find `(dy)/(dx)` when `x = 5`. (2 marks)
`log_e 5 +2`
`(dy)/(dx)` | `= 1 xx log_e x + (x + 5) * (1)/(x)` |
`= log_e x + (x + 5)/(x)` |
`:. dy/dx|_(x=5)=log_e 5 +2`
Differentiate `5^(x^2)5x`. (2 marks)
`5^(x^2 + 1)(ln5*2x^2 + 1)`
`y` | `= 5^(x^2) * 5x` |
`(dy)/(dx)` | `= ln5*2x*5^(x^2)*5x + 5^(x^2)*5` |
`=5^(x^2)(ln5*10x^2 + 5)` | |
`=5^(x^2 + 1)(ln5*2x^2 + 1)` |
Differentiate `3x 6^x`. (2 marks)
`3*6^x(xln6 +1)`
`y` | `= 3x * 6^x` |
`(dy)/(dx)` | `= 3*6^x + ln6 * 6^x *3x` |
`= 3*6^x(1 + xln6)` |
Differentiate `x^3 ln x`. (2 marks)
`x^2 (3 ln\ x + 1)`
`y = x^3 ln\ x`
`text(Using the product rule:)`
`(dy)/(dx)` | `= 3x^2 * ln\ x + x^3 * 1/x` |
`= x^2 (3 ln\ x + 1)` |
Differentiate `y = (x + 4) ln\ x`. (2 marks)
`ln\x + 4/x +1`
`y = (x + 4) ln\ x`
`text(Using the product rule)`
`(dy)/(dx)` | `= d/(dx) (x + 4) * ln x + (x + 4) d/(dx) ln\ x` |
`= ln x + (x + 4) 1/x` | |
`= ln x + 4/x + 1` |
Differentiate with respect to `x`:
`x^2 log_e x` (2 marks)
`x + 2x log_e x`
`y` | `= x^2 log_e x` |
`dy/dx` | `= x^2 * 1/x + 2x * log_e x` |
`= x + 2x log_e x` |
Differentiate with respect to `x`
`(x-1)log_ex` (2 marks)
`log_ex+1-1/x`
`y` | `=(x-1)log_ex` |
`dy/dx` | `=1(log_ex)+(x-1)1/x` |
`=log_ex+1-1/x` |
Differentiate `x^2e^x` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`xe^x(x+2)`
`text{Using the product rule}`
`text(Let)\ \ u=x^2,` | `\ \ \ \ \ \ u^{\prime}=2x` |
`text(Let)\ \ v=e^x,` | `\ \ \ \ \ \ v^{\prime}=e^x` |
`{d(uv)}/dx` | `=u prime v+v prime u` |
`=2x e^x +x^2 e^x ` | |
`=xe^x(x+2)` |