Differentiate with respect to \(x\) :
\(f(x)=\log _e\left(\dfrac{x^3}{3-2 x}\right)\) (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Differentiate with respect to \(x\) :
\(f(x)=\log _e\left(\dfrac{x^3}{3-2 x}\right)\) (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(f^{\prime}(x)=\dfrac{9-4 x}{x(3-2 x)}\)
\begin{align}
\begin{aligned}
\text {Let} \ \ & u=x^3 & u^{\prime}=3 x^2 \\
& v=3-2 x & v^{\prime}=-2
\end{aligned}
\end{align}
| \(f^{\prime}(x)\) | \(=\dfrac{\dfrac{v u^{\prime}-u v^{\prime}}{v^2}}{\frac{x^3}{3-2 x}}\) |
| \(=\dfrac{(3-2 x) 3 x^2-x^3(-2)}{(3-2 x)^2} \times \dfrac{3-2 x}{x^3}\) | |
| \(=\dfrac{x^2(9-6 x+2 x)}{(3-2 x)} \times \dfrac{1}{x^3}\) | |
| \(=\dfrac{9-4 x}{x(3-2 x)}\) |
Let \(y=\dfrac{x^2-x}{e^x}\).
Find and simplify \(\dfrac{dy}{dx}\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(\dfrac{-x^2+3x-1}{e^x}\)
\(\text{Using the quotient rule:}\)
| \(\dfrac{dy}{dx}\) | \(=\dfrac{e^x(2x-1)-(x^2-x)e^x}{(e^x)^2}\) |
| \(=\dfrac{e^x(-x^2+3x-1)}{e^{2x}}\) | |
| \(=\dfrac{-x^2+3x-1}{e^x}\) |
Let `f(x) = (e^x)/((x^2 - 3))`.
Find `f′(x)`. (2 marks)
`{e^x(x^2 – 2x – 3)}/{(x^2 – 3)^2}`
`text(Let) \ \ u = e^x \ \ => \ \ u′ = e^x`
`v = (x^2 – 3) \ \ => \ \ v′ = 2x`
| `f′(x)` | `= {e^x(x^2 – 3) – 2x e^x}/{(x^2 – 3)^2}` |
| `= {e^x(x^2 – 2x – 3)}/{(x^2 – 3)^2}` |
Let `y = (2e^(2x) - 1)/e^x`.
Find `(dy)/(dx)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(dy)/(dx) = 2e^x + e^(-x)`
`text(Method 1)`
| `y` | `= 2e^x – e^(-x)` |
| `(dy)/(dx)` | `= 2e^x + e^(-x)` |
`text(Method 2)`
| `(dy)/(dx)` | `= (4e^(2x) ⋅ e^x – (2e^(2x) – 1) e^x)/(e^x)^2` |
| `= (4e^(3x) – 2e^(3x) + e^x)/e^(2x) ` | |
| `= (2e^(2x) + 1)/e^x` |
Differentiate `e^x/(x + 1)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(xe^x)/(x + 1)^2`
`y = e^x/(x + 1)`
`text(Differentiate using quotient rule:)`
| `u = e^x` | `v = x + 1` |
| `u prime = e^x` | `v prime = 1` |
| `(dy)/(dx)` | `= (u prime v – u v prime)/v^2` |
| `= (e^x(x + 1) – e^x ⋅ 1)/(x + 1)^2` | |
| `= (x e^x)/(x + 1)^2` |
Differentiate with respect to `x`:
`(2x)/(e^x + 1)` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`{2(e^x + 1 – xe^x)}/(e^x + 1)^2`
`y = (2x)/(e^x + 1)`
| `u` | `= 2x` | `\ \ \ \ \v` | `= e^x + 1` |
| `u prime` | `= 2` | `\ \ \ \ \ v prime` | `= e^x` |
| `(dy)/(dx)` | `= (u prime v – uv prime)/v^2` |
| `= {2(e^x + 1) – 2x(e^x)}/(e^x + 1)^2` | |
| `= (2e^x + 2 – 2x * e^x)/(e^x + 1)^2` | |
| `= {2(e^x + 1 – xe^x)}/(e^x + 1)^2` |