SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C2 SM-Bank 14

Differentiate  `pi^(2x)`.  (2 marks)

Show Answers Only

`2log_e(pi) * pi^(2x)`

Show Worked Solution
COMMENT: `pi` is a constant. See HSC exam reference sheet for differentiating  `a^(f(x))`.
`y` `=pi^(2x)`  
`dy/dx` `=log_e(pi) * 2 * pi^(2x)`  
  `=2log_e(pi) *pi^(2x)`  

Filed Under: L&E Differentiation (Y12) Tagged With: Band 4, smc-965-20-Differentiation (base a), smc-967-15-Exponentials (base a), smc-967-50-Chain Rule, smc-967-60-New Reference Sheet

Calculus, 2ADV C2 EQ-Bank 4 MC

If  `f(x)=log_2(x^(2x))`, which expression is equal to  `f^(′)(x)`?

  1. `2/(x^(2x)ln2`
  2. `2/ln2 + 2log_2x`
  3. `log_2x+2/ln2`
  4. `2/ln2 xx log_2(x^(2x-1))`
Show Answers Only

`B`

Show Worked Solution
`f(x)` `=log_2(x^(2x))`  
  `=2x log_2x`  
  `=(2x lnx)/ln2`  

 

`f^(′)(x)` `=1/ln2 (2x*1/x + 2lnx)`  
  `=2/ln2 + (2lnx)/ln2`  
  `=2/ln2 + 2log_2x`  

 
`=>  B`

Filed Under: L&E Differentiation (Y12), Log Calculus (Y12) Tagged With: Band 4, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-30-Product Rule, smc-967-60-New Reference Sheet, smc-967-70-Log Laws required

Calculus, 2ADV C2 SM-Bank 4

Differentiate  `5^(x^2)5x`.  (2 marks)

Show Answers Only

`5^(x^2 + 1)(ln5*2x^2 + 1)`

Show Worked Solution

COMMENT: See HSC exam reference sheet when differentiating  `5^x`.

`y` `= 5^(x^2) * 5x`
`(dy)/(dx)` `= ln5*2x*5^(x^2)*5x + 5^(x^2)*5`
  `=5^(x^2)(ln5*10x^2 + 5)`
  `=5^(x^2 + 1)(ln5*2x^2 + 1)`

Filed Under: Exponential Calculus (Y12), L&E Differentiation (Y12) Tagged With: Band 4, smc-965-20-Differentiation (base a), smc-967-15-Exponentials (base a), smc-967-30-Product Rule, smc-967-50-Chain Rule, smc-967-60-New Reference Sheet

Calculus, 2ADV C2 EQ-Bank 3

Differentiate  `3x  6^x`.  (2 marks)

Show Answers Only

`3*6^x(xln6 +1)`

Show Worked Solution

COMMENT: See HSC exam reference sheet when differentiating  `6^x`.

`y` `= 3x * 6^x`
`(dy)/(dx)` `= 3*6^x + ln6 * 6^x *3x`
  `= 3*6^x(1 + xln6)`

Filed Under: Exponential Calculus (Y12), L&E Differentiation (Y12) Tagged With: Band 3, smc-965-20-Differentiation (base a), smc-967-15-Exponentials (base a), smc-967-30-Product Rule, smc-967-60-New Reference Sheet

Calculus, 2ADV C2 EQ-Bank 2

Differentiate with respect to `x`:

`10^(5x^2 - 3x)`.  (2 marks)

Show Answers Only

`(dy)/(dx) = ln 10  (10x – 3) * 10^(5x^2 – 3x)`

Show Worked Solution

`y = 10^(5x^2 – 3x)`

TIP: The new Advanced reference sheet can be used here!

`(dy)/(dx) = ln 10  (10x – 3) * 10^(5x^2 – 3x)`

 

Filed Under: Exponential Calculus (Y12), L&E Differentiation (Y12) Tagged With: Band 3, smc-965-20-Differentiation (base a), smc-967-15-Exponentials (base a), smc-967-50-Chain Rule, smc-967-60-New Reference Sheet

Calculus, 2ADV C2 EQ-Bank 1

Differentiate  `log_2 x^2`  with respect to `x`.  (2 marks)

Show Answers Only

`2/(xln2)`

Show Worked Solution
TIP: The new Advanced reference sheet can be used here!

`y` `= log_2 x^2`
`(dy)/(dx)` `= {:d/(dx):} ((lnx^2)/(ln2))`
  `= 1/(ln2) · d/(dx)(ln x^2)`
  `= 1/(ln2) · (2x)/(x^2)`
  `= 2/(xln2)`

Filed Under: L&E Differentiation (Y12), Log Calculus (Y12) Tagged With: Band 3, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-60-New Reference Sheet

Copyright © 2014–2025 SmarterEd.com.au · Log in