If `f(x)=log_2(x^(2x))`, which expression is equal to `f^(′)(x)`?
- `2/(x^(2x)ln2`
- `2/ln2 + 2log_2x`
- `log_2x+2/ln2`
- `2/ln2 xx log_2(x^(2x-1))`
Aussie Maths & Science Teachers: Save your time with SmarterEd
If `f(x)=log_2(x^(2x))`, which expression is equal to `f^(′)(x)`?
`B`
`f(x)` | `=log_2(x^(2x))` | |
`=2x log_2x` | ||
`=(2x lnx)/ln2` |
`f^(′)(x)` | `=1/ln2 (2x*1/x + 2lnx)` | |
`=2/ln2 + (2lnx)/ln2` | ||
`=2/ln2 + 2log_2x` |
`=> B`
Let `y = (2e^(2x) - 1)/e^x`.
Find `(dy)/(dx)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(dy)/(dx) = 2e^x + e^(-x)`
`text(Method 1)`
`y` | `= 2e^x – e^(-x)` |
`(dy)/(dx)` | `= 2e^x + e^(-x)` |
`text(Method 2)`
`(dy)/(dx)` | `= (4e^(2x) ⋅ e^x – (2e^(2x) – 1) e^x)/(e^x)^2` |
`= (4e^(3x) – 2e^(3x) + e^x)/e^(2x) ` | |
`= (2e^(2x) + 1)/e^x` |
Differentiate with respect to `x`:
`log_e x^x`. (2 marks)
`1 + log_ex`
`y` | `=log_e x^x` | |
`=xlog_ex` | ||
`dy/dx` | `=x*1/x + log_ex` | |
`=1 + log_ex` |