SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C3 2022 HSC 22

Find the global maximum and minimum values of  `y=x^(3)-6x^(2)+8`, where  `-1 <= x <= 7`.   (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Global max = 57}`

`text{Global min = – 24}`

Show Worked Solution
`y` `=x^3-6x^2+8`  
`dy/dx` `=3x^2-12x`  
`(d^2y)/(dx^2)` `=6x-12`  

 
`text{SP’s when}\ \ dy/dx=0:`

`3x^2-12x` `=0`  
`3x(x-4)` `=0`  

 
`x=0\ \ text{or}\ \ 4`

`text{When}\ \ x=0,\ \ y=8,\ \ (d^2y)/(dx^2)<0`

`=>\ text{Local Max at}\ \ (0,8)`

`text{When}\ \ x=4,\ \ y=4^3-6(4^2)+8=-24,\ \ (d^2y)/(dx^2)>0`

`=>\ text{Local Min at}\ \ (4,-24)`
 

`text{Check ends of domain:}`

`text{When}\ \ x=-1,\ \ y=-1-6+8=1`

`text{When}\ \ x=7,\ \ y=7^3-6(7^2)+8=57`

`:.\ text{Global max = 57}`

`:.\ text{Global min = – 24}`

Filed Under: Curve Sketching (Y12) Tagged With: Band 4, smc-969-10-Cubic, smc-969-60-Range defined

Calculus, 2ADV C3 2006 HSC 5a

A function  `f(x)`  is defined by  `f(x) =2x^2(3-x)`.

  1. Find the coordinates of the turning points of  `y =f(x)`  and determine their nature.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the coordinates of the point of inflection.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Hence sketch the graph of  `y =f(x)`, showing the turning points, the point of inflection and the points where the curve meets the `x`-axis.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  4. What is the minimum value of  `f(x)`  for  `–1 ≤ x ≤4`?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Min)\ (0, 0),\ text(Max)\ (2, 8)`
  2. `text(P.I. at)\ (1, 4)`
  3.  
  4. `-32`
Show Worked Solution
i.       `f(x)` `= 2x^2 (3-x)`
  `= 6x^2-2x^3`
`f^{prime} (x)` `= 12x-6x^2`
`f^{″}(x)` `= 12-12x`

 

`text(S.P.’s when)\ f^{′}(x) = 0`

`12x-6x^2` `= 0`
`6x(2-x)` `= 0`

`x = 0 or 2`

`text(When)\ x = 0`

`f(0)` `= 0`
`f^{″}(0)` `= 12-0 = 12 > 0`
`:.\ text(MIN at)\ (0, 0)`

 

`text(When)\ x = 2`

`f(2)` `= 2 xx 2^2 (3-2)` `= 8`
`f^{″}(2)` `= 12-(12 xx 2)` `= -12 < 0`
`:.\ text(MAX at)\ (2, 8)`

 

ii.  `text(P.I. when)\ f^{″}(x) = 0`

`12-12x` `= 0`
`12x` `= 12`
`x` `= 1`
`f^{″}(0.5)` `=6>0`
`f^{″}(1.5)` `=-6<0`

`text(S)text(ince concavity changes)\ \ =>\  text(P.I. exists)` 

`f(1)` `= 2 xx 1^2(3-1)`
  `= 4`

`:.\ text(P.I. at)\ (1, 4)`

 

iii.  `f(x)\ text(meets)\ x text(-axis when)\ f(x) = 0`

`2x^2 xx (3-x) = 0`

`x = 0 or 3`

2UA HSC 2006 5a

 

(iv)  `text(The graph clearly shows that in the given range)`

`-1<= x<=4,\ text(the minimum will occur when)\ x = 4`

`:.\ text(Minimum` `= 2 xx 4^2 (3-4)`
  `= -32`

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, smc-969-10-Cubic, smc-969-60-Range defined

Copyright © 2014–2025 SmarterEd.com.au · Log in