SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C4 2018* HSC 15c

The shaded region is enclosed by the curve  `y = x^3 - 7x`  and the line  `y = 2x`, as shown in the diagram. The line  `y = 2x`  meets the curve  `y = x^3 - 7x`  at  `O(0, 0)`  and  `A(3, 6)`. Do NOT prove this.
 


 

  1.  Use integration to find the area of the shaded region.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Use the Trapezoidal rule and four function values to approximate the area of the shaded region.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

The point `P` is chosen on the curve  `y = x^3 − 7x`  so that the tangent at `P` is parallel to the line  `y = 2x`  and the `x`-coordinate of `P` is positive

  1.  Show that the coordinates of `P` are  `(sqrt 3, -4 sqrt 3)`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2.  Using the perpendicular distance formula  `|ax_1 + by_1 + c|/sqrt(a^2 + b^2)`,  find the area of  `Delta OAP`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `81/4\ text(units²)`
  2. `18\ text(u²)`
  3. `text(Proof)\ \ text{(See Worked Solutions)}`
  4. `9 sqrt 3\ text(units²)`
Show Worked Solution
i.   `text(Area)` `= int_0^3 2x – (x^3 – 7x)\ dx`
    `= int_0^3 9x – x^3\ dx`
    `= [9/2 x^2 – 1/4 x^4]_0^3`
    `= [(9/2 xx 3^2 – 1/4 xx 3^4) – 0]`
    `= 81/2 – 81/4`
    `= 81/4\ text(units²)`

 

ii.  `f(x) = 9x – x^3`

`text(Area)` `~~ 1/2[0 + 2(8 + 10) + 0]`
  `~~ 1/2(36)`
  `~~ 18\ text(u²)`

 

iii.   `y = x^3 – 7x`

`(dy)/(dx) = 3x^2 – 7`

`text(Find)\ \ x\ \ text(such that)\ \ (dy)/(dx) = 2`

`3x^2 – 7` `= 2`
`3x^2` `= 9`
`x^2` `= 3`
`x` `= sqrt 3 qquad (x > 0)`

 

`y` `= (sqrt 3)^3 – 7 sqrt 3`
  `= 3 sqrt 3 – 7 sqrt 3`
  `= -4 sqrt 3`

 
`:. P\ \ text(has coordinates)\ (sqrt 3, -4 sqrt 3)`

 

iv.  

 

`text(dist)\ OA` `= sqrt((3 – 0)^2 + (6 – 0)^2)`
  `= sqrt 45`
  `= 3 sqrt 5`

 
`text(Find)\ _|_\ text(distance of)\ \ P\ \ text(from)\ \ OA`

`P(sqrt 3, -4 sqrt 3),\ \ 2x – y=0`

`_|_\ text(dist)` `= |(2 sqrt 3 + 4 sqrt 3)/sqrt (3 + 2)|`
  `= (6 sqrt 3)/sqrt 5`
   
`:.\ text(Area)` `= 1/2 xx 3 sqrt 5 xx (6 sqrt 3)/sqrt 5`
  `= 9 sqrt 3\ text(units²)`

Filed Under: Areas Under Curves (Y12), Trapezium Rule and Newton, Trapezoidal Rule (Y12) Tagged With: Band 4, Band 5, smc-5145-04-Trapezium rule, smc-5145-20-No table, smc-975-20-Cubic, smc-976-20-No Table

Calculus, 2ADV C4 2013 HSC 13b

The diagram shows the graphs of the functions  `f(x) = 4x^3-4x^2 +3x`  and  `g(x) = 2x`. The graphs meet at  `O`  and at  `T`.
 

2013 13b

  1. Find the  `x`-coordinate of  `T`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the area of the shaded region between the graphs of the functions  `f(x)`  and  `g(x)`.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `T\ text(is)\ (1/2, 1)`
  2. `text(Shaded area between the curves is)\ 1/48\ text(u²)`
Show Worked Solution
i. `T\ text(occurs when)\ \ f(x) = g(x)`
`4x^3-4x^2 + 3x` `=2x`
`4x^3-4x^2 + x` `=0`
`x(4x^2-4x + 1)` `=0`
`x(2x-1)^2` `=0`

 

`2x-1=0 \ \ => \ x=1/2`

`text(Substitute)\ \ x=1/2\ \ text(into)\ g(x)`

`g(1/2) = 2 xx 1/2 = 1`

`:.\ T (1/2, 1)`

 

ii. `text(Shaded Area)` `= int_0^(1/2) (f(x)-g(x)) \ dx`
    `= int_0^(1/2) (4x^3-4x^2 + x) \ dx`
    `= [x^4-4/3x^3 + 1/2x^2]_0^(1/2)`
    `= [((1/2)^4-4/3(1/2)^3 + 1/2(1/2)^2)-0]`
    `= 1/16-1/6 + 1/8`
    `= 1/48\ text(u²)`

 
`:.\ text(Shaded area between the curves is)\ 1/48\ text(u²)`

Filed Under: Areas Under Curves, Areas Under Curves (Y12) Tagged With: Band 4, smc-975-20-Cubic

Copyright © 2014–2025 SmarterEd.com.au · Log in