What is the domain of the function \(f(x)=\dfrac{1}{\sqrt{x^2-1}}\) ?
- \([-1,1]\)
- \((-\infty,-1] \cup[1, \infty)\)
- \((-1,1)\)
- \((-\infty,-1) \cup(1, \infty)\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
What is the domain of the function \(f(x)=\dfrac{1}{\sqrt{x^2-1}}\) ?
\( D \)
\(x^2-1\) | \(>0\) | |
\(x^2\) | \(>1\) |
\( x<-1 \ \cup \ x>1 \)
\( x \in(-\infty,-1) \cup(1, \infty) \)
\( \Rightarrow D \)
What is the domain of `f(x)=1/sqrt{1-x}`?
`A`
`text{Cannot have square root of a negative number.}`
`text{Denominator}\ !=0`
`1-x` | `>0` | |
`-x` | `> -1` | |
`x` | `<1` |
`=>A`
Which inequality gives the domain of `y = sqrt(2x-3)`?
`D`
`text(Domain exists when:)`
`2x-3` | `>= 0` |
`2x` | `>= 3` |
`x` | `>= 3/2` |
`=>D`
--- 2 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
Find the domain of the function `f(x) = sqrt (3-x)`. (2 marks)
`x <= 3 or (-oo,3].`
`text(Domain of)\ \ f(x) = sqrt (3-x)`
`3-x` | `>= 0` |
`x` | `<= 3` |
`text(Note domain can also be expressed as:)\ \ (-oo,3]`
Let `f(x) = sqrt(x-8)`. What is the domain of `f(x)`? (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
`x >= 8`
`f(x) = sqrt(x-8)`
`text(Domain exists for:)`
`(x-8)` | `>= 0` |
`x` | `>= 8` |
Which inequality defines the domain of the function `f(x) = 1/sqrt(x+3)` ?
`A`
`text(Given)\ f(x) = 1/sqrt(x+3)`
`(x + 3)` | `> 0` |
`x` | `> -3` |
`:.\ text(The domain of)\ f(x)\ text(is)\ \ \ f(x)> -3`
`=> A`