SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Statistics, 2ADV S3 2024 MET2 14*

A function, \(h(x)\), is defined as

\(h(x)=\left\{
\begin{array} {c}
\rule{0pt}{2.5ex} \ \ \ \ \ \dfrac{x}{6}+k \rule[-1ex]{0pt}{0pt} & -3 \leq x<0 \\
\rule{0pt}{2.5ex} \ \ -\dfrac{x}{2}+k \rule[-1ex]{0pt}{0pt} & 0 \leq x \leq 1 \\
\rule{0pt}{2.5ex} 0 \rule[-1ex]{0pt}{0pt} & \text { elsewhere } \\
\end{array}\right.\)

and \(k\) is a constant.

Find the value of \(k\) such that \(h(x)\) is a probability density function.   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(k=\dfrac{1}{2}\)

Show Worked Solution

\(h(x)\ \text{is a PDF if}\ \ \displaystyle \int_{-3}^1 h(x)=1\)

\(\displaystyle \int_{-3}^1 h(x)\) \(=\displaystyle \int_{-3}^0 \dfrac{x}{6}+k\,dx +\int_0^1 -\dfrac{x}{2}+k\,dx\)
\(1\) \(=\left[\dfrac{x^2}{12}+kx\right] _{-3}^0 +\left[-\dfrac{x^2}{4}+kx\right] _0^1\) 
\(1\) \(=0-\left(\dfrac{9}{12}-3k\right)+\left(-\dfrac{1}{4}+k\right)-0\)
\(1\) \(=4k-1\)
\(k\) \(=\dfrac{1}{2}\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-50-Linear PDF

Statistics, 2ADV S3 2024 HSC 25

A function \(f(x)\) is defined as

\(f(x)=\left\{\begin{array}{ll} 0, & \text { for}\ \ x \lt 0 \\
1-\dfrac{x}{h}, & \text { for}\ \ 0 \leq x \leq h, \\
0, & \text { for}\ \  x \gt h \end{array}\right.\)

where \(h\) is a constant.

  1. Find the value of \(h\) such that \(f(x)\) is a probability density function.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. By first finding a formula for the cumulative distribution function, sketch its graph.   (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  3. Find the value of the median of the probability density function \(f(x)\) . Give your answer correct to 3 decimal places.   (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(h=2\)

b.   

c.   \(\text{Median}\ =0.586\)

Show Worked Solution

a.   \(f(x)\ \text{is a PDF if:}\)

\(\displaystyle \int_{0}^{h} 1-\dfrac{x}{h}\,dx\) \(=1\)  
\(\Big[x-\dfrac{x^2}{2h} \Big]_0^{h}\) \(=1\)  
\(h-\dfrac{h}{2}\) \(=1\)  
\(h\) \(=2\)  

  
b.
   \( \displaystyle \int 1-\dfrac{x}{2}\,dx = x-\dfrac{x^2}{4} + c\)

\(\text{At}\ \ x=0, \ \ F(0)=0,\ \ c=0 \)

\(f(x)=\left\{\begin{array}{ll} 0, & \text { for}\ \ x \lt 0 \\
x-\dfrac{x^2}{4}, & \text { for}\ \ 0 \leq x \leq 2, \\
1, & \text { for}\ \  x \gt 2 \end{array}\right.\)
 

♦♦ Mean mark (b) 27%.

c.   \(\text{Let}\ \ m=\ \text{median of}\ f(x) \)

\(\displaystyle \int_0^{m} 1-\dfrac{x}{2}\,dx\)  \(=0.5\)  
\(\Big[ x-\dfrac{x^2}{4} \Big]_0^m\) \(=0.5\)  
\(m-\dfrac{m^2}{4}\) \(=0.5\)  
\(4m-m^2\) \(=2\)  
\(m^2-4m+2\) \(=0\)  
\((m-2)^2\) \(=2\)  
\(m\) \(=2 \pm \sqrt{2}\)  

 

\(\therefore \ \text{Median}\) \(=2-\sqrt{2}\ \ (x \in [0,2]) \)   
  \(=0.586\ \text{(3 d.p.)}\)  
♦♦ Mean mark (c) 38%.

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, smc-994-10-Median, smc-994-40-Cumulative Distribution Fn, smc-994-50-Linear PDF

Statistics, 2ADV S3 SM-Bank 20

A continuous random variable `X` has a probability density function given by
 

`f(x) = {{:(Cx + D),(0):}\ \ \ \ {:(2 <= x <= 5),(text(elsewhere)):}:}`
 

where `C` and `D` are constants.

Find the exact values of `C` and `D`, given the median of  `X`  is 4.  (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`C = 1/6`

`D = −1/4`

Show Worked Solution

`int_2^5 Cx + D\ dx = 1`

`[C/2 x^2 + Dx]_2^5 = 1`

`[(25/2 C + 5D) – (2C + 2D)]` `= 1`
`21/2C + 3D` `= 1`
`21C + 6D` `= 2\ \ …\ (1)`

 
`text(Using median)\ \ X = 4:`

`[C/2 x^2 + Dx]_2^4 = 0.5`

`[(8C + 4D) – (2C + 2D)]` `= 0.5`
`6C + 2D` `= 0.5\ \ …\ (2)`

  
`text(Multiply:)\ (2) xx 3`

`18C + 6D = 1.5\ \ …\ (3)`
 

`text(Subtract:)\ \ (1) – (3)`

`3C` `= 1/2`
`:. C` `= 1/6`

 
`text{Substitute into (1):}`

`21/6 + 6D` `= 2`
`6D` `= −9/6`
`:. D` `= −1/4`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-10-Median, smc-994-50-Linear PDF

Statistics, 2ADV S3 SM-Bank 13

The time Jennifer spends on her homework each day varies, but she does some homework every day.

The continuous random variable \(T\), which models the time, \(t\), in minutes, that Jennifer spends each day on her homework, has a probability density function \(f\), where

\(f(t)= \begin{cases}
\dfrac{1}{625}(t-20) & 20 \leq t<45 \\
\ \\
\dfrac{1}{625}(70-t) & 45 \leq t \leq 70 \\
\ \\
0 & \text {elsewhere }
\end{cases}\)

  1. Sketch the graph of  \(f(t)\) on the axes provided below.  (3 marks)

     

        
     

  2. Find the mode.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. Find  \(P(25 \leq T \leq 55)\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  

  2. \(45\)
  3. \(\dfrac{4}{5}\)
Show Worked Solution
i.   

MARKER’S COMMENT: Many did not draw graph along \(t\)-axis between 0 and 20 and for  \(t>70\).

 
ii.
     \(\text{Mode \(=45\) (value of \(t\) at highest value of \(f(t))\)}\)
 

iii.    \(P(25 \leq T \leq 55)\)

\(\begin{aligned}
& =\int_{25}^{45} \dfrac{1}{625}(t-20) d t+\int_{45}^{55} \dfrac{1}{625}(70-t) d t \\
& =\dfrac{1}{625}\left[\dfrac{t^2}{2}-20 t\right]_{25}^{45}+\dfrac{1}{625}\left[70 t-\dfrac{t^2}{2}\right]_{45}^{55} \\
& =\dfrac{1}{625}[112.5-(-187.5)]+\dfrac{1}{625}(2337.5-2137.5) \\ & =\dfrac{300}{625}+\dfrac{200}{625} \\
& =\dfrac{4}{5}
\end{aligned}\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 5, smc-994-20-Mode, smc-994-30-Other Probability, smc-994-50-Linear PDF

Statistics, 2ADV S3 SM-Bank 11

The probability density function of a continuous random variable \(X\) is given by

\(f(x)=\begin{cases}
\dfrac{x}{12} & 1 \leq x \leq 5 \\
\ \\
0 & \text {otherwise }
\end{cases}\)

Find  \(P(X < 3)\)  (2 marks)

Show Answers Only

\(\dfrac{1}{3}\)

Show Worked Solution

\(\begin{aligned}
P(X & <3)\\
& =\int_1^3 \dfrac{1}{12} x d x \\
& =\dfrac{1}{12}\left[\frac{1}{2} x^2\right]_1^3 \\
& =\dfrac{1}{24}\left[3^2-1^2\right] \\
& =\dfrac{1}{3}
\end{aligned}\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-30-Other Probability, smc-994-50-Linear PDF

Statistics, 2ADV S3 SM-Bank 9

The probability density function  \(f(x)\)  of a random variable \(X\) is given by

\(f(x)=\begin{cases}
\dfrac{x+1}{12} & 0 \leq x \leq 4 \\
\ \\
0 & \text{otherwise }
\end{cases}\)

Find the value of \(b\) such that \(P(X \leq b)=\dfrac{5}{8}\).  (3 marks)

Show Answers Only

\(3\)

Show Worked Solution

\(\begin{aligned}
\dfrac{1}{12} \int_0^b(x+1) d x & =\dfrac{5}{8} \\
{\left[\dfrac{1}{2} x^2+x\right]_0^b } & =\dfrac{15}{2} \\
\dfrac{1}{2} b^2+b & =\dfrac{15}{2} \\
b^2+2 b-15 & =0 \\ (b+5)(b-3) & =0
\end{aligned}\)

\(\therefore b=3 \quad(0 \leq b \leq 4)\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-30-Other Probability, smc-994-50-Linear PDF

Statistics, 2ADV S3 SM-Bank 2

If a continuous random variable  \(X\)  has probability density function

\(f(x)=
\begin{cases}
\dfrac{x}{2} & \text{if } \quad 0 \leq x \leq 2 \\
\ \\
0 & \text {otherwise }
\end{cases}\)

Find the exact value of  \(p\)  such that  \(P(X>p) = 0.4\).   (3 marks)

Show Answers Only

\(\dfrac{2 \sqrt{15}}{5}\)

Show Worked Solution

\(\displaystyle \int_p^2 \dfrac{x}{2} d x=0.4\)

\(\begin{aligned} {\left[\dfrac{x^2}{4}\right]_p^2 } & =\dfrac{2}{5} \\
1-\dfrac{p^2}{4} & =\dfrac{2}{5} \\
\dfrac{p^2}{4} & =\dfrac{3}{5} \\ p^2 & =\dfrac{12}{5} \\
\therefore p & =\dfrac{2 \sqrt{3}}{\sqrt{5}} \\
& =\dfrac{2 \sqrt{15}}{5} \quad(0 \leq p \leq 2)
\end{aligned}\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-30-Other Probability, smc-994-50-Linear PDF

Copyright © 2014–2025 SmarterEd.com.au · Log in