SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Probability, 2ADV EQ-Bank 3

Consider the universal set  \(U=\{x\) is a positive integer and \(x \leqslant 15\}\)

Three sets are defined as:

\begin{aligned}
& A=\{x \text { is a multiple of } 3\} \\
& B=\{x \text{ is a prime number}\} \\
& C=\{x \text{ is even}\}
\end{aligned}

  1. List the elements of set \(A\).   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2.  Find  \(B \cap C\)   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Find  \(A \cup \overline{C}\)   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(A=\{3,6,9,12,15\}\)

b.   \(B \cap C = \{2\} \)

c.    \(A \cup \overline{C}=\{1,3,5,6,7,9,11,12,13,15\}\)

Show Worked Solution

a.    \(A=\{3,6,9,12,15\}\)
 

b.    \(B=\{2,3,5,7,11,13\}\)

\(C=\{2,4,6,8,10,12,14\}\)

\(B \cap C = \{2\} \)
 

c.    \(\text{Find} \ \ A \cup \overline{C}:\)

\(\overline{C}=\{1,3,5,7,9,11,13\}\)

\(A \cup \overline{C}=\{1,3,5,6,7,9,11,12,13,15\}\)

Filed Under: Conditional Probability and Venn Diagrams Tagged With: Band 2, Band 3, smc-6470-05-Sets/Set Notation, syllabus-2027

Copyright © 2014–2026 SmarterEd.com.au · Log in