SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV EQ-Bank 6

The function  \(g(x)=\left\{\begin{array}{ll}a x+b, & \text {for } x \leq 2 \\ x^2-1, & \text {for } x>2\end{array}\right.\) 

\(g(x)\) is continuous at  \(x =2\)  and passes through the point  \((0,-5)\).

  1. Find the values of \(a\) and \(b\)   (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  2. Evaluate  \(g(3)-g(-1)\)   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(a=4, b=-5\)

b.    \(17\)

Show Worked Solution

a.    \(\text{Since} \ f(x) \ \text{is continuous at} \ \ x=2:\)

\(a(2)+b\) \(=2^2-1\)
\(2 a+b\) \(=3\ \ldots\ (1)\)

 
\(\text{Since} \ g(x) \ \text{passes through}\ (0,-5):\)

\(a(0)+b=-5 \ \ \Rightarrow\ \ b=-5\)
 

\(\text{Substitute}\ \ b=-5 \ \ \text{into (1):}\)

\(2 a-5=3 \ \ \Rightarrow\ \ a=4\)
 

b.     \(g(3)-g(-1)\) \(=\left(3^2-1\right)-[4(-1)-5]\)
    \(=8+9\)
    \(=17\)

Filed Under: Piecewise Functions Tagged With: Band 3, Band 4, smc-6217-40-Continuity, smc-6217-60-Other problems, syllabus-2027

Copyright © 2014–2026 SmarterEd.com.au · Log in