SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C1 2019 HSC 14d v1

The equation of the tangent to the curve  `y = ae^(2x)+bx`  at the point where  `x = 0`  is  `y = 3x +2`.

Find the values of  `a`  and  `b`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`b = -1,\ \ a = 2`

Show Worked Solution
`y ` `= ae^(2x)+bx`
`(dy)/(dx)` `= 2ae^(2x)+b`

 
`text(When)\ \ x = 0,\ \ (dy)/(dx) = 3`

`2a + b` `= 3\ …\ (1)`

 
`text(The point)\ (0, 2)\ text(lies on)\ y:`

`a(1) +b(0)` `=2`
`a` `= 2\ …\ (2)`

  

`text(Substitute into)\ (1)`

`2(2)+b` `= 3`
`b` `= -1`

Filed Under: Tangents (Adv-X) Tagged With: Band 5, eo-derivative (HSC), smc-973-20-Find Curve Equation

Calculus, 2ADV C1 EO-Bank 2

  1.  Find the equations of the tangents to the curve  `y = x^2-5x+6`  at the points where the curve cuts the `x`-axis.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  Where do the tangents intersect?  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `y = −x+2`
    `y = x-3`
  2. `(5/2, −1/2)`
Show Worked Solution
a.   `y` `= x^2-5x+6`
  `= (x-2)(x-3)`

 
`text(Cuts)\ xtext(-axis at)\ \ x = 2\ \ text(or)\ \ x = 3`
 

`(dy)/(dx) = 2x-5`

 
`text(At)\ \ x = 2 \ => \ (dy)/(dx) = -1`

`T_1\ text(has)\ \ m = −1,\ text{through (2, 0)}`

`y -0` `= -1(x-2)`
`y` `= -x+2`

  

`text(At)\ \ x = 3 \ => \ (dy)/(dx) = 1`

`T_2\ text(has)\ \ m = 3,\ text{through (3, 0)}`

`y -0` `= 1(x-3)`
`y` `= x -3`

 

b.   `text(Intersection occurs when:)`

`-x+2` `= x-3`
`2x` `= 5`
`x` `= 5/2`

  

`y = 5/2 – 3 = −1/2`

`:.\ text(Intersection at)\ \ (5/2, −1/2)`

Filed Under: Tangents (Adv-X) Tagged With: Band 3, Band 4, eo-unique, smc-973-10-Find Tangent Equation, smc-973-30-Intersections

Calculus, 2ADV C1 EO-Bank 1

Find the equation of the tangent to the curve  \(y=e^{x^2+3x}\)  at the point where \(x=1\).  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`y = 5e^4x-4e^4`

Show Worked Solution
\(y\) \(=e^{x^2+3x}\)
`(dy)/(dx)` \(=(2x+3)e^{x^2+3x}\)

 
`text(When)\ x = 1,\ \ (dy)/(dx) = 5e^4`

`text(Equation of tangent through)\ (1, e^4)`

`y-e^4` `= 5e^4(x – 1)`
`y` `= 5e^4x-4e^4`

Filed Under: Tangents (Adv-X) Tagged With: Band 4, eo-unique, smc-973-10-Find Tangent Equation

Calculus, 2ADV C1 2023 HSC 14 v1

Find the equation of the tangent to the curve  `y=x(3x+2)^2`  at the point `(1,25)`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`y=55x-30`

Show Worked Solution
`y` `=x(3x+2)^2`  
`dy/dx` `=6x(3x+2) + (3x+2)^2`  
  `=(3x+2)(9x+2)`  

 
`text{At}\ x=1\ \ =>\ \ dy/dx=(3(1)+2)(9(1)+2)=55`
 

`text{Find equation of line}\ \ m=55,\ text{through}\ (1,25)`

`y-y_1` `=m(x-x_1)`  
`y-25` `=55(x-1)`  
`y` `=55x-30`  

Filed Under: Tangents (Adv-X) Tagged With: Band 3, eo-derivative (HSC), smc-973-10-Find Tangent Equation

Calculus, 2ADV C1 2009 HSC 1d v1

Find the gradient of the tangent to the curve `y = 2x^3-5x^2 + 4` at the point `(2, 0)`.   (2 marks)

Show Answers Only

`text(Gradient = 2.)`

Show Worked Solution
`y` `= 2x^3-5x^2 + 4`  
`dy/dx` `= 6x^2-10x`  
     

`text(At)\ x = 2:`

`dy/dx= 6(2)^2-10(2)=24-20=4`

`:.\ text(Gradient of tangent at)\ (2, 0) = 4.`

Filed Under: Tangents (Adv-X) Tagged With: Band 3, eo-derivative (HSC), smc-973-10-Find Tangent Equation

Calculus, 2ADV C1 EO-Bank 3 MC

At which point on the curve  \(y = x^{2}-6x + 8\)  can a normal be drawn such that it is inclined at 45\(^{\circ}\) to the positive \(x\)-axis?

  1. \((1,3)\)
  2. \((2,0)\)
  3. \(\left(\dfrac{5}{2}, -\dfrac{3}{4}\right)\)
  4. \((5,-7)\)
Show Answers Only

\(C\)

Show Worked Solution

\(y = x^{2}-6x + 8\)

\(y^{′} = 2x-6\)

If the normal is inclined at \(45^{\circ}\) to the positive x-axis then:

\(m_{\text{normal}} = \tan 45^{\circ} = 1\)

\(\text{Since } m_{\text{tangent}} \times m_{\text{normal}} = -1,\)

\(\therefore m_{\text{tangent}} = -1.\)
 

Find \(x\) when \(y^{′} = -1:\)

\(2x-6\) \(=-1\)  
\(2x\) \(=5\)  
\(x\) \(=\dfrac{5}{2}\)  

 
Find \(y:\)

\(y\) \(= \left(\dfrac{5}{2}\right)^{2}-6\left(\dfrac{5}{2}\right) + 8\)  
  \(=\dfrac{25}{4}-15 + 8\)  
  \(= -\dfrac{3}{4}\)  

 
\(\Rightarrow C\)

Filed Under: Tangents (Adv-X) Tagged With: Band 5, eo-unique, smc-973-10-Find Tangent Equation

Copyright © 2014–2026 SmarterEd.com.au · Log in