The equation of the tangent to the curve `y = ae^(2x)+bx` at the point where `x = 0` is `y = 3x +2`.
Find the values of `a` and `b`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The equation of the tangent to the curve `y = ae^(2x)+bx` at the point where `x = 0` is `y = 3x +2`.
Find the values of `a` and `b`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`b = -1,\ \ a = 2`
| `y ` | `= ae^(2x)+bx` |
| `(dy)/(dx)` | `= 2ae^(2x)+b` |
`text(When)\ \ x = 0,\ \ (dy)/(dx) = 3`
| `2a + b` | `= 3\ …\ (1)` |
`text(The point)\ (0, 2)\ text(lies on)\ y:`
| `a(1) +b(0)` | `=2` |
| `a` | `= 2\ …\ (2)` |
`text(Substitute into)\ (1)`
| `2(2)+b` | `= 3` |
| `b` | `= -1` |
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
| a. `y` | `= x^2-5x+6` |
| `= (x-2)(x-3)` |
`text(Cuts)\ xtext(-axis at)\ \ x = 2\ \ text(or)\ \ x = 3`
`(dy)/(dx) = 2x-5`
`text(At)\ \ x = 2 \ => \ (dy)/(dx) = -1`
`T_1\ text(has)\ \ m = −1,\ text{through (2, 0)}`
| `y -0` | `= -1(x-2)` |
| `y` | `= -x+2` |
`text(At)\ \ x = 3 \ => \ (dy)/(dx) = 1`
`T_2\ text(has)\ \ m = 3,\ text{through (3, 0)}`
| `y -0` | `= 1(x-3)` |
| `y` | `= x -3` |
b. `text(Intersection occurs when:)`
| `-x+2` | `= x-3` |
| `2x` | `= 5` |
| `x` | `= 5/2` |
`y = 5/2 – 3 = −1/2`
`:.\ text(Intersection at)\ \ (5/2, −1/2)`
Find the equation of the tangent to the curve \(y=e^{x^2+3x}\) at the point where \(x=1\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`y = 5e^4x-4e^4`
| \(y\) | \(=e^{x^2+3x}\) |
| `(dy)/(dx)` | \(=(2x+3)e^{x^2+3x}\) |
`text(When)\ x = 1,\ \ (dy)/(dx) = 5e^4`
`text(Equation of tangent through)\ (1, e^4)`
| `y-e^4` | `= 5e^4(x – 1)` |
| `y` | `= 5e^4x-4e^4` |
Find the equation of the tangent to the curve `y=x(3x+2)^2` at the point `(1,25)`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`y=55x-30`
| `y` | `=x(3x+2)^2` | |
| `dy/dx` | `=6x(3x+2) + (3x+2)^2` | |
| `=(3x+2)(9x+2)` |
`text{At}\ x=1\ \ =>\ \ dy/dx=(3(1)+2)(9(1)+2)=55`
`text{Find equation of line}\ \ m=55,\ text{through}\ (1,25)`
| `y-y_1` | `=m(x-x_1)` | |
| `y-25` | `=55(x-1)` | |
| `y` | `=55x-30` |
Find the gradient of the tangent to the curve `y = 2x^3-5x^2 + 4` at the point `(2, 0)`. (2 marks)
`text(Gradient = 2.)`
| `y` | `= 2x^3-5x^2 + 4` | |
| `dy/dx` | `= 6x^2-10x` | |
`text(At)\ x = 2:`
`dy/dx= 6(2)^2-10(2)=24-20=4`
`:.\ text(Gradient of tangent at)\ (2, 0) = 4.`
At which point on the curve \(y = x^{2}-6x + 8\) can a normal be drawn such that it is inclined at 45\(^{\circ}\) to the positive \(x\)-axis?
\(C\)
\(y = x^{2}-6x + 8\)
\(y^{′} = 2x-6\)
If the normal is inclined at \(45^{\circ}\) to the positive x-axis then:
\(m_{\text{normal}} = \tan 45^{\circ} = 1\)
\(\text{Since } m_{\text{tangent}} \times m_{\text{normal}} = -1,\)
\(\therefore m_{\text{tangent}} = -1.\)
Find \(x\) when \(y^{′} = -1:\)
| \(2x-6\) | \(=-1\) | |
| \(2x\) | \(=5\) | |
| \(x\) | \(=\dfrac{5}{2}\) |
Find \(y:\)
| \(y\) | \(= \left(\dfrac{5}{2}\right)^{2}-6\left(\dfrac{5}{2}\right) + 8\) | |
| \(=\dfrac{25}{4}-15 + 8\) | ||
| \(= -\dfrac{3}{4}\) |
\(\Rightarrow C\)