SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Algebra, STD2 A1 2015 HSC 28d v1

The formula  \(C=\dfrac{5}{9}(F-32)\)  is used to convert temperatures between degrees Fahrenheit \((F)\) and degrees Celsius \((C)\).

Convert 18°C to the equivalent temperature in Fahrenheit.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(64.4\ \text{degrees}\ F\)

Show Worked Solution
\(C\) \(=\dfrac{5}{9}(F-32)\)
\(F-32\) \(=\dfrac{9}{5}C\)
\(F\)  \(=\dfrac{9}{5}C+32\)

 
\(\text{When}\ \ C = 18,\)

\(F\)  \(=\dfrac{9}{5}\times 18+32\)
  \(=64.4\ \text{degrees}\ F\)

Filed Under: Formula Rearrange (Std 2-X), Substitution and Other Equations (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-5232-10-Linear, smc-5233-20-Rearrange and substitute

Algebra, STD2 A1 2013 HSC 21 MC v1

Which equation correctly shows  \(n\)  as the subject of  \(V=600(1-n)\)?

  1. \(n=\dfrac{V-600}{600}\)
  2. \(n=\dfrac{600-V}{600}\)
  3. \(n=V-600\)
  4. \(n=600-V\)
Show Answers Only

\(B\)

Show Worked Solution
♦♦♦ Mean mark 27%
\(V\) \(=600(1-n)\)
\(1-n\) \(=\dfrac{V}{600}\)
\(n\) \(=1-\dfrac{V}{600}\)
  \(=\dfrac{600-V}{600}\)

 
\(\Rightarrow B\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-10-Linear

Algebra, STD2 A1 2012 HSC 21 MC v1

Which of the following correctly expresses \(r\) as the subject of  \(V=\pi r^2+x\) ?

  1. \(r=\pm\sqrt{\dfrac{V}{\pi}}-x\)
  2. \(r=\pm\sqrt{\dfrac{V}{\pi}-x}\)
  3. \(r=\pm\sqrt{\dfrac{V-x}{\pi}}\)
  4. \(r=\pm\dfrac{\sqrt{V-x}}{\pi}\)
Show Answers Only

\(C\)

Show Worked Solution
\(V\) \(=\pi r^2+x\)
\(\pi r^2\) \(=V-x\)
\(r^2\) \(=\dfrac{V-x}{\pi}\)
\(\therefore\ r\) \(=\pm\sqrt{\dfrac{V-x}{\pi}}\)

\(\Rightarrow C\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-5232-20-Non-Linear

Algebra, STD2 A1 2011 HSC 18 MC v1

Which of the following correctly expresses  \(b\)  as the subject of  \(y= ax+\dfrac{1}{4}bx^2\)?

  1. \(b=\dfrac{4y-ax}{x^2}\)
  2. \(b=\dfrac{4(y-ax)}{x^2}\)
  3. \(b=\dfrac{\dfrac{1}{4}y-ax}{x^2}\)
  4. \(b=\dfrac{\dfrac{1}{4}(y-ax)}{x^2}\)
Show Answers Only

\(B\)

Show Worked Solution
\(y\) \(= ax+\dfrac{1}{4}bx^2\)
\(\dfrac{1}{4}bx^2\) \(=y-ax\)
\(bx^2\)  \(=4(y-ax)\)
\(b\) \(=\dfrac{4(y-ax)}{x^2}\)

 
\(\Rightarrow B\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-20-Non-Linear

Algebra, STD2 A1 2010 HSC 18 MC v1

Which of the following correctly express  \(h\)  as the subject of  \(A=\dfrac{bh}{2}\) ?

  1. \(h=\dfrac{A-2}{b}\)
  2. \(h=2A-b\)
  3. \(h=\dfrac{2A}{b}\)
  4. \(h=\dfrac{Ab}{2}\)
Show Answers Only

\(C\)

Show Worked Solution
\(A\) \(=\dfrac{bh}{2}\)
\(bh\) \(=2A\)
\(\therefore\ h\) \(=\dfrac{2A}{b}\)

 
\(\Rightarrow C\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), num-title-ct-pathc, num-title-qs-hsc, smc-1200-10-Linear, smc-1201-10-Linear, smc-4362-20-Formula rearrange

Algebra, STD2 A1 2004 HSC 11 MC v1

If  \(m = 8n^2\), what is a possible value of \(n\) when  \(m=7200\)?

  1. \(0.03\)
  2. \(30\)
  3. \(240\)
  4. \(900\)
Show Answers Only

\(B\)

Show Worked Solution
\(m\) \(=8n^2\)
\(n^2\) \(=\dfrac{m}{8}\)
\(n\) \(=\pm\sqrt{\dfrac{m}{8}}\)

 
\(\text{When}\ m=7200:\)

\(n\) \(=\pm\sqrt{\dfrac{7200}{8}}\)
  \(=\pm 30\)

 
\(\Rightarrow B\)

Filed Under: Formula Rearrange (Std 2-X), Substitution and Other Equations (Std 2-X) Tagged With: Band 4, eo-unique, smc-5232-20-Non-Linear, smc-5233-20-Rearrange and substitute

Algebra, STD2 A1 2006 HSC 18 MC v1

What is the formula for \(g\) as the subject of \(7d=8e+5g^2\)?

  1. \(g =\pm\sqrt{\dfrac{8e-7d}{5}}\)
  2. \(g =\pm\sqrt{\dfrac{7d-8e}{5}}\)
  3. \(g =\pm\dfrac{\sqrt{7d+8e}}{5}\)
  4. \(g =\pm\dfrac{\sqrt{8e-7d}}{5}\)
Show Answers Only

\(B\)

Show Worked Solution
\(7d\) \(=8e+5g^2\)
\(5g^2\) \(=7d-8e\)
\(g^2\) \(=\dfrac{7d-8e}{5}\)
\(g\) \(=\pm\sqrt{\dfrac{7d-8e}{5}}\)

\(\Rightarrow B\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-20-Non-Linear

Algebra, STD2 A1 2007 HSC 19 MC v1

Which of the following correctly expresses  \(X\)  as the subject of  \(Y=4\pi\Bigg(\dfrac{X}{4}+L\Bigg)\)?

  1. \(X=\dfrac{Y}{\pi}-L\)
  2. \(X=\dfrac{Y}{\pi}-4L\)
  3. \(X=4L-\dfrac{Y}{2\pi}\)
  4. \(X=\dfrac{Y}{8\pi}-\dfrac{L}{4}\)
Show Answers Only

\(B\)

Show Worked Solution
\(Y\) \(=4\pi\Bigg(\dfrac{X}{4}+L\Bigg)\)
\(\dfrac{Y}{4\pi}\) \(=\dfrac{X}{4}+L\)
\(\dfrac{X}{4}\) \(=\dfrac{Y}{4\pi}-L\)
\(X\) \(=4\Bigg(\dfrac{Y}{4\pi}-L\Bigg)\)
\(X\) \(=\dfrac{Y}{\pi}-4L\)

 
\(\Rightarrow B\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-10-Linear

Algebra, STD2 A1 2005 HSC 24c v1

Make  \(r\)  the subject of the equation  \(V=4\pi r^2\).   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(r=\pm\sqrt{\dfrac{V}{4\pi}}\)

Show Worked Solution
\(V\) \(=4\pi r^2\)
\(r^2\) \(=\dfrac{V}{4\pi}\)
\(\therefore\ r\) \(=\pm\sqrt{\dfrac{V}{4\pi}}\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-20-Non-Linear

Algebra, STD2 A1 2016 HSC 24 MC v1

Which of the following correctly expresses \(M\) as the subject of  \(y=\dfrac{M}{V}+cX\)?

  1. \(M=Vy-VcX\)
  2. \(M=Vy+VcX\)
  3. \(M=\dfrac{y-cX}{V}\)
  4. \(M=\dfrac{y+cX}{V}\)
Show Answers Only

\(A\)

Show Worked Solution
\(y\) \(=\dfrac{M}{V}+cX\)
\(\dfrac{M}{V}\) \(=y-cX\)
\(\therefore\ M\) \(=V(y-cX)\)
  \(=Vy-VcX\)

 
\(\Rightarrow A\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-5232-10-Linear

Algebra, STD2 A1 2017 HSC 28d v1

Make  \(b\)  the subject of the equation  \(a=\sqrt{bc-4}\).  (2 marks)

Show Answers Only

\(b=\dfrac{a^2+4}{c}\)

Show Worked Solution
♦ Mean mark 46%.
\(a\) \(=\sqrt{bc-4}\)
\(a^2\) \(=bc-4\)
\(bc\) \(=a^2+4\)
\(\therefore\ b\) \(=\dfrac{a^2+4}{c}\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-20-Non-Linear

Algebra, STD2 A1 EO-Bank 6

Make \(r\) the subject of the equation  \(u=\dfrac{5}{4}r+25\).  (2 marks)

Show Answers Only

\(r=\dfrac{4}{5}u-20\)

Show Worked Solution
\(u\) \(=\dfrac{5}{4}r+25\)
\(\dfrac{5}{4}r\) \(=u-25\)
\(r\) \(=\dfrac{4}{5}(u-25)\)
\(r\) \(=\dfrac{4}{5}u-20\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-unique, smc-5232-10-Linear

Algebra, STD2 A1 2019 HSC 11 MC v1

Which of the following correctly expresses \(y\) as the subject of the formula  \(5x-2y-9=0\)?

  1.  \(y=\dfrac{5}{2}x-9\)
  2.  \(y=\dfrac{5}{2}x+9\)
  3.  \(y=\dfrac{5x+9}{2}\)
  4.  \(y=\dfrac{5x-9}{2}\)
Show Answers Only

\(D\)

Show Worked Solution

♦ Mean mark 50%.

\(5x-2y-9\) \(=0\)
\(2y\) \(=5x-9\)
\(\therefore\ y\) \(=\dfrac{5x-9}{2}\)

 
\(\Rightarrow D\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-10-Linear

Algebra, STD2 A1 EO-Bank 11

Make  \(V\)  the subject of the equation  \(E=\dfrac{3}{2}mV^3\).  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(v=\sqrt[3]{\dfrac{2E}{3m}}\)

Show Worked Solution
\(E\) \(=\dfrac{3}{2}mV^3\)
\(2E\) \(=3mV^3\)
\(\dfrac{2E}{3}\) \(=mV^3\)
\(V^3\) \(=\dfrac{2E}{3m}\)
\(V\) \(=\sqrt[3]{\dfrac{2E}{3m}}\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-unique, smc-5232-20-Non-Linear

Algebra, STD2 A1 EO-Bank 12

Make  \(x\)  the subject of the equation  \(y=\dfrac{2}{7}(x-25)\).  (2 marks)

Show Answers Only

\(x=\dfrac{7y}{2}+25\)

Show Worked Solution
\(y\) \(=\dfrac{2}{7}(x-25)\)
\(7y\) \(=2(x-25)\)
\(\dfrac{7y}{2}\) \(=x-25\)
\(\therefore\ x\) \(=\dfrac{7y}{2}+25\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-unique, smc-5232-10-Linear

Algebra, STD1 A1 2019 HSC 34 v1

Given the formula  \(D=\dfrac{B(x+1)}{18}\), calculate the value of  \(x\)  when  \(D=90\)  and  \(B=400\).  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(3.05\)

Show Worked Solution

\(\text{Make}\ x\ \text{the subject:}\)

\(D\) \(=\dfrac{B(x+1)}{18}\)
\(18D\) \(=B(x+1)\)
\(x+1\) \(=\dfrac{18D}{B}\)
\(x\) \(=\dfrac{18D}{B}-1\)
\(\text{When }\) \(D=90, B=400\)
\(\therefore\ x\) \(=\dfrac{18\times 90}{400}-1=3.05\)

Filed Under: Formula Rearrange (Std 2-X), Substitution and Other Equations (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-5232-10-Linear, smc-5233-20-Rearrange and substitute

Algebra, STD2 A2 2022 HSC 14 MC v1

Which of the following correctly expresses \(x\) as the subject of  \(y=\dfrac{mx-c}{3}\) ?

  1. \(x=\dfrac{3y}{m}+c\)
  2. \(x=\dfrac{y}{3m}+c\)
  3. \(x=\dfrac{y+c}{3m}\)
  4. \(x=\dfrac{3y+c}{m}\)
Show Answers Only

\(D\)

Show Worked Solution
\(y\) \(=\dfrac{mx-c}{3}\)
\(3y\) \(=mx-c\)
\(mx\) \(=3y+c\)
\(\therefore\ x\) \(=\dfrac{3y+c}{m}\)

 
\(\Rightarrow D\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-5232-10-Linear

Algebra, STD2 A1 EO-Bank 9

The volume of a sphere is given by  \(V=\dfrac{4}{3}\pi r^3\)  where  \(r\)  is the radius of the sphere.

If the volume of a sphere is  \(385\ \text{cm}^3\), find the radius, to 1 decimal place.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(4.5\ \text{cm  (to 1 d.p.)}\)

Show Worked Solution
\(V\) \(=\dfrac{4}{3}\pi r^3\)
\(3V\) \(= 4\pi r^3\)
\(r^3\) \(=\dfrac{3V}{4\pi}\)

 

\(\text{When}\ \ V =385\)

\(r^3\) \(=\dfrac{3\times 385}{4\pi}\)
  \(=91.911\dots\)
\(\therefore\ r\) \(=\sqrt[3]{91.911\dots}\)
  \(=4.512\dots\ \ \text{(by calc)}\)
  \(=4.5\ \text{cm   (to 1 d.p.)}\)

Filed Under: Formula Rearrange (Std 2-X), Substitution and Other Equations (Std 2-X) Tagged With: Band 4, eo-unique, smc-5232-20-Non-Linear, smc-5233-20-Rearrange and substitute

Copyright © 2014–2025 SmarterEd.com.au · Log in