SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Polynomials, EXT1 EQ-Bank 11

The polynomial  \(R(x)=x^3+p x^2+q x+6\)  has a double zero at  \(x=-1\)  and a zero at  \(x=s\).

Find the values of \(p, q\) and \(s\).   (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(s=-6, \ p=8, \ q=13\)

Show Worked Solution

\(R(x)=x^3+p x^2+q x+6\)

\(R(x)\ \text{is monic with a zero at} \ s \ \text{and double zero at}\ -1:\)

\(R(x)\) \(=(x+1)^2(x-s)\)
  \(=\left(x^2+2 x+1\right)(x-s)\)
  \(=x^3+2 x^2+x-s x^2-2 s x-s\)
  \(=x^3+(2-s) x^2+(1-2 s) x-s\)

 

\(\text{Equating coefficients:}\)

\(-s=6 \ \Rightarrow \ s=-6\)

\(p=2-(-6)=8\)

\(q=1-2(-6)=13\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-20-Degree/Coefficients, smc-6742-25-Multiplicity of Zeroes, syllabus-2027

Polynomials, EXT1 EQ-Bank 10

The polynomial  \(R(x)=2 x^4+a x^3+b x^2+c x+d\)  has a double zero at  \(x=1\), a zero at  \(x=-3\), and passes through the point \((0,-12)\).

Find the integer values of \(a, b, c, d\) and the fourth zero of the polynomial.   (4 marks)

--- 12 WORK AREA LINES (style=lined) ---

Show Answers Only

\(a=-2, \ b=-14, \ c=26, \ d=-12\)

\(\text{Fourth zero:} \ \ x=2\)

Show Worked Solution

\(R(x)=2 x^4+a x^3+b x^2+c x+d\)

\(\text{Since leading coefficient is 2 with a double zero at 1 and a zero at }-3:\)

\(R(x)=2(x-1)^2(x+3)(x-k) \ \ \text{where} \ k \ \text{is the fourth zero.}\)

\(\text{The polynomial passes through}\ (0,-12):\)

\(R(0)=2(0-1)^2(0+3)(0-k)=-12\ \ \Rightarrow\ \ k=2\)
 

\(\text{Expanding}\ R(x):\)

\(R(x)\) \(=2(x-1)^2(x+3)(x-2)\)  
  \(=2\left(x^2-2 x+1\right)(x+3)(x-2) \)  
  \(=2(x^3+3 x^2-2 x^2-6 x+x+3)(x-2) \)  
  \(=2(x^3+x^2-5 x+3)(x-2) \)  
  \(=2(x^4+x^3-5 x^2+3 x-2 x^3-2 x^2+10 x-6) \)  
  \(=2 x^4-2 x^3-14 x^2+26 x-12\)  

 

\(\text{Equating coefficients:}\)

\(a=-2, \ b=-14, \ c=26, \ d=-12\)

\(\text{Fourth zero:} \ \ x=2\)

Filed Under: Graphs of Polynomials Tagged With: Band 4, smc-6742-20-Degree/Coefficients, smc-6742-25-Multiplicity of Zeroes, syllabus-2027

Polynomials, EXT1 EQ-Bank 9

A polynomial has the equation

\(Q(x)=(x+1)^2(x-2)\left(x^2+2 x-8\right)\)

  1. Express  \(Q(x)\)  as a product of linear factors and determine the multiplicity of each of its roots.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Hence, without using calculus, draw a sketch of \(y=Q(x)\), showing all  \(x\)-intercepts.   (2 marks)

    --- 12 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(Q(x) = (x+1)^2(x-2)\left(x^2+2 x-8\right) \)

\(\text{Roots:}\)

\(x=-1 \ \ \text{(multiplicity 2)}\)

\(x=2 \ \ \text{(multiplicity 2)}\)

\(x=4 \ \ \text{(multiplicity 1)}\)
 

b.

Show Worked Solution
a.     \(Q(x)\) \(=(x+1)^2(x-2)\left(x^2+2 x-8\right)\)
    \(=(x+1)^2(x-2)(x-2)(x+4)\)
    \(=(x+1)^2(x-2)^2(x-4)\)

 

\(\text{Roots:}\)

\(x=-1 \ \ \text{(multiplicity 2)}\)

\(x=2 \ \ \text{(multiplicity 2)}\)

\(x=4 \ \ \text{(multiplicity 1)}\)
 

b.    \(Q(x) \ \text{degree}=5, \ \text{Leading coefficient}=1\)

\(\text{As} \ \ x \rightarrow-\infty, y \rightarrow-\infty\)

\(\text{As} \ \ x \rightarrow \infty, y \rightarrow \infty\)

\(\text{At}\ \ x=0, \ y=1^2 \times (-2)^2 \times -4 = -16\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, Band 4, smc-6742-25-Multiplicity of Zeroes, smc-6742-40-Sketch Graphs, syllabus-2027

Polynomials, EXT1 EQ-Bank 8

A polynomial \(f(x)\) is defined by

\(f(x)=-3x^3+27x^2+12x-1\)

Explain what happens to \(f(x)\) as  \(x \rightarrow-\infty\).   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Since}\ f(x) \ \text{has degree 3:}\)

\(\text{As} \ \ x \rightarrow-\infty, x^3 \rightarrow-\infty\)

\(f(x) \ \text{has leading coefficient}=-3\)

\(\therefore\ \text{As} \ \ x \rightarrow-\infty,-3 x^3 \rightarrow \infty, \ f(x) \rightarrow \infty\)

Show Worked Solution

\(\text{Since}\ f(x) \ \text{has degree 3:}\)

\(\text{As} \ \ x \rightarrow-\infty, x^3 \rightarrow-\infty\)

\(f(x) \ \text{has leading coefficient}=-3\)

\(\therefore\ \text{As} \ \ x \rightarrow-\infty,-3 x^3 \rightarrow \infty, \ f(x) \rightarrow \infty\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-30-\(x \rightarrow \pm \infty\), syllabus-2027

Polynomials, EXT1 EQ-Bank 7

Consider a polynomial  \(y=(x+3)^2(2-x) \cdot Q(x)\)

where  \(Q(x)=6-x-x^2\)

Explain what happens to \(y\) as  \(x \rightarrow-\infty\).   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
\(y\) \(=(x+3)^2(2-x)\left(6-x-x^2\right)\)
  \(=(x+3)^2(2-x)(x+3)(2-x)\)
  \(=(x+3)^3(2-x)^2\)

 

\(\text{Degree\(=5\), Leading co-efficient\(=1\)}\)

\(\therefore \text{As} \ \ x \rightarrow-\infty, x^5 \rightarrow-\infty, y \rightarrow-\infty\)

Show Worked Solution
\(y\) \(=(x+3)^2(2-x)\left(6-x-x^2\right)\)
  \(=(x+3)^2(2-x)(x+3)(2-x)\)
  \(=(x+3)^3(2-x)^2\)

 

\(\text{Degree\(=5\), Leading co-efficient\(=1\)}\)

\(\therefore \text{As} \ \ x \rightarrow-\infty, x^5 \rightarrow-\infty, y \rightarrow-\infty\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-30-\(x \rightarrow \pm \infty\), syllabus-2027

Polynomials, EXT1 EQ-Bank 5

Consider the function  \(P(x)=(x-1)^2(x+2)\left(x^2+3 x-4\right)\)

  1. By expressing \(P(x)\) as a product of its linear factors, identify its zeroes and the multiplicity of each zero.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Without using calculus, draw a sketch of  \(y=P(x)\)  showing any \(x\)-intercepts.   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(P(x)=(x-1)^3(x+2)(x+4)\)

\(\text{Roots:}\)

\(x=-2 \ \ \text{(multiplicity 1)}\)

\(x=-4 \ \ \text{(multiplicity 1)}\)

\(x=1 \ \ \text{(multiplicity 3)}\)
 

b.  

Show Worked Solution
a.     \(P(x)\) \(=(x-1)^2(x+2)\left(x^2+3 x-4\right)\)
    \(=(x-1)^2(x+2)(x-1)(x+4)\)
    \(=(x-1)^3(x+2)(x+4)\)

 
\(\text{Roots:}\)

\(x=-2 \ \ \text{(multiplicity 1)}\)

\(x=-4 \ \ \text{(multiplicity 1)}\)

\(x=1 \ \ \text{(multiplicity 3)}\)
 

b.    \(\text{Degree} \ P(x)=5, \ \ \text {Leading coefficient }=1\)

\(\text{As} \ \ x \rightarrow \infty, \ y \rightarrow \infty\)

\(\text{As} \ \ x \rightarrow -\infty, \ y \rightarrow -\infty\)

\(\text{At} \ \ x=0, y=-8\)
 

Filed Under: Graphs of Polynomials Tagged With: Band 3, Band 4, smc-6742-25-Multiplicity of Zeroes, smc-6742-40-Sketch Graphs, syllabus-2027

Polynomials, EXT1 EQ-Bank 5 MC

The graph of  `y = f(x)`  is shown.
 

Which of the following could be the equation of this graph?

  1. `y = (1-x)(2 + x)^3`
  2. `y = (x + 1)(x-2)^3`
  3. `y = (x + 1)(2-x)^3`
  4. `y = (x-1)(2 + x)^3`
Show Answers Only

`C`

Show Worked Solution

`text(By elimination:)`

`text(A single negative root occurs when)\ \ x =–1`

`->\ text(Eliminate A and D)`

`text(When)\ \ x = 0, \ y > 0`

`->\ text(Eliminate B)`

`=> C`

Filed Under: Graphs of Polynomials Tagged With: Band 4, smc-6742-10-Identify Graphs, syllabus-2027

Polynomials, EXT1 EQ-Bank 4 MC

Which of the following best represents the graph of  \(y=-5 x(x-2)(3-x)\)?
 

Show Answers Only

\(C\)

Show Worked Solution

\(\text{By elimination:}\)

\(\text{Degree = 3,  Leading co-efficient}\ = 5\)

\(\text{As}\ \ x \rightarrow \infty,\ \ y \rightarrow \infty\ \text{(eliminate A and B)}\)

\(\text{When}\ x=1:\)

\(y=-5(-1)(2)=10>0\ \ \text{(eliminate D)}\)

\(\Rightarrow C\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-10-Identify Graphs, syllabus-2027

Polynomials, EXT1 EQ-Bank 3

Consider the polynomial \(P(x)=x(3-x)^3\).

  1. State the degree of the polynomial and identify the leading coefficient.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Explain what happens to \(y\) as  \(x \rightarrow \pm \infty\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Without using calculus, sketch \(P(x)\) showing its general form and any \(x\)-intercepts.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\text{Degree}\ P(x)=4\)

\(\text{Leading co-efficient}=-1\)
 

b.    \(\text{As} \ \ x \rightarrow-\infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).

\(\text{As} \ \ x \rightarrow \infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).
 

c.    \(P(x)\ \text{has zeroes at}\ \ x=0, 3:\)


       

Show Worked Solution

a.    \(\text{Degree}\ P(x)=4\)

\(\text{Leading co-efficient}=-1\)
 

b.    \(\text{As} \ \ x \rightarrow-\infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).

\(\text{As} \ \ x \rightarrow \infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).
 

c.    \(P(x)\ \text{has zeroes at}\ \ x=0, 3:\)


       

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-20-Degree/Coefficients, smc-6742-30-\(x \rightarrow \pm \infty\), smc-6742-40-Sketch Graphs, syllabus-2027

Polynomials, EXT1 EQ-Bank 4

The polynomial  \(p(x) = x^3 + ax^2 + b\)  has a zero at \(r\) and a double zero at 4.

Find the values of \(a, b\) and \(r\).   (3 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(a =-6, b = 32, r = -2\)

Show Worked Solution

\(p(x) = x^3 + ax^2 + b\)

\(\text{Zero at \(r\) and double zero at 4:}\)

\(p(x)\) \(=(x-4)^2(x-r) \)  
  \(=(x^2-8x+16)(x-r)\)  
  \(=x^3-8x^2+16x-rx^2+8rx-16r\)  
  \(=x^3+(-8-r)x^2+(16+8r)x-16r\)  

 

\(\text{Equating coefficients:}\)

\(16+8r=0\ \ \Rightarrow \ \ r=-2\)

\(a=-8-(-2)=-6\)

\(b=-16 \times -2=32\)

Filed Under: Graphs of Polynomials Tagged With: Band 4, smc-6742-20-Degree/Coefficients, syllabus-2027

Polynomials, EXT1 EQ-Bank 2

Consider a polynomial  \(y=-2 x^5-26 x^4-x+1\).

With reference to the leading term, explain what happens to \(y\) as  \(x \rightarrow-\infty\).   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{As}\ \ x \rightarrow-\infty,\ \ x^{5}\ \rightarrow-\infty\)

\(\text{Since the leading coefficient \((-2)\) is negative:}\)

\(\text{As}\ \ x \rightarrow-\infty,\ \ y \rightarrow \infty.\)

Show Worked Solution

\(\text{As}\ \ x \rightarrow-\infty,\ \ x^{5}\ \rightarrow-\infty\)

\(\text{Since the leading coefficient \((-2)\) is negative:}\)

\(\text{As}\ \ x \rightarrow-\infty,\ \ y \rightarrow \infty.\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-30-\(x \rightarrow \pm \infty\), syllabus-2027

Polynomials, EXT1 EQ-Bank 1

A polynomial has the equation

\(P(x)=(x-1)(x-3)(x+2)^2\left(x^2-x-6\right)\).

  1. By expressing \(P(x)\) as a product of its linear factors, determine the multiplicity of each of the roots of  \(P(x)=0\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Hence, without using calculus, draw a sketch of  \(y=P(x)\)  showing all \(x\)-intercepts.   (2 marks)

    --- 12 WORK AREA LINES (style=blank) ---

Show Answers Only
a.     \(P(x)\) \(=(x-1)(x-3)(x+2)^2\left(x^2-x-6\right)\)
    \(=(x-1)(x-3)(x+2)^2(x-3)(x+2)\)
    \(=(x-1)(x-3)^2(x+2)^3\)

 

\(\text{Roots:}\)

\(x=1\ \text{(multiplicity 1)}\)

\(x=-2\ \text{(multiplicity 3)}\)

\(x=3\ \text{(multiplicity 2)}\)
 

b.
     

Show Worked Solution
a.     \(P(x)\) \(=(x-1)(x-3)(x+2)^2\left(x^2-x-6\right)\)
    \(=(x-1)(x-3)(x+2)^2(x-3)(x+2)\)
    \(=(x-1)(x-3)^2(x+2)^3\)

 

\(\text{Roots:}\)

\(x=1\ \text{(multiplicity 1)}\)

\(x=-2\ \text{(multiplicity 3)}\)

\(x=3\ \text{(multiplicity 2)}\)
 

b.
     

Filed Under: Graphs of Polynomials Tagged With: Band 3, Band 4, smc-6742-25-Multiplicity of Zeroes, smc-6742-40-Sketch Graphs, syllabus-2027

Functions, EXT1 F2 2020 HSC 5 MC

A monic polynomial `p(x)` of degree 4 has one repeated zero of multiplicity 2 and is divisible by  `x^2 + x + 1`.

Which of the following could be the graph of `p(x)`?

A. B.
C. D.
Show Answers Only

`C`

Show Worked Solution

`text(S)text(ince)\ p(x)\ text(is monic,)`

`=> p(x) = (x-a)^2(x^2 + x + 1)`
 

`text(Consider the factor)\ \ (x^2 + x + 1):`

`Delta = sqrt(1^2-4 · 1 · 1) = sqrt(-3) < 0 =>\ text(No roots)`

`:. text(Only root is)\ \ x = a\ \ (text(multiplicity 2))`

`=>\ text(Eliminate)\ \ B and D`
 

`\text{Since}\ p(x)\ \text{is monic:}`

`text(As)\ \ x -> ∞, \ p(x) -> ∞`

`=>C`

Filed Under: Graphs of Polynomials, Sum, Products and Multiplicity of Roots (Ext1) Tagged With: Band 4, smc-6742-10-Identify Graphs

Copyright © 2014–2026 SmarterEd.com.au · Log in