The polynomial \(R(x)=x^3+p x^2+q x+6\) has a double zero at \(x=-1\) and a zero at \(x=s\).
Find the values of \(p, q\) and \(s\). (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The polynomial \(R(x)=x^3+p x^2+q x+6\) has a double zero at \(x=-1\) and a zero at \(x=s\).
Find the values of \(p, q\) and \(s\). (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(s=-6, \ p=8, \ q=13\)
\(R(x)=x^3+p x^2+q x+6\)
\(R(x)\ \text{is monic with a zero at} \ s \ \text{and double zero at}\ -1:\)
| \(R(x)\) | \(=(x+1)^2(x-s)\) |
| \(=\left(x^2+2 x+1\right)(x-s)\) | |
| \(=x^3+2 x^2+x-s x^2-2 s x-s\) | |
| \(=x^3+(2-s) x^2+(1-2 s) x-s\) |
\(\text{Equating coefficients:}\)
\(-s=6 \ \Rightarrow \ s=-6\)
\(p=2-(-6)=8\)
\(q=1-2(-6)=13\)
The polynomial \(R(x)=2 x^4+a x^3+b x^2+c x+d\) has a double zero at \(x=1\), a zero at \(x=-3\), and passes through the point \((0,-12)\).
Find the integer values of \(a, b, c, d\) and the fourth zero of the polynomial. (4 marks)
--- 12 WORK AREA LINES (style=lined) ---
\(a=-2, \ b=-14, \ c=26, \ d=-12\)
\(\text{Fourth zero:} \ \ x=2\)
\(R(x)=2 x^4+a x^3+b x^2+c x+d\)
\(\text{Since leading coefficient is 2 with a double zero at 1 and a zero at }-3:\)
\(R(x)=2(x-1)^2(x+3)(x-k) \ \ \text{where} \ k \ \text{is the fourth zero.}\)
\(\text{The polynomial passes through}\ (0,-12):\)
\(R(0)=2(0-1)^2(0+3)(0-k)=-12\ \ \Rightarrow\ \ k=2\)
\(\text{Expanding}\ R(x):\)
| \(R(x)\) | \(=2(x-1)^2(x+3)(x-2)\) | |
| \(=2\left(x^2-2 x+1\right)(x+3)(x-2) \) | ||
| \(=2(x^3+3 x^2-2 x^2-6 x+x+3)(x-2) \) | ||
| \(=2(x^3+x^2-5 x+3)(x-2) \) | ||
| \(=2(x^4+x^3-5 x^2+3 x-2 x^3-2 x^2+10 x-6) \) | ||
| \(=2 x^4-2 x^3-14 x^2+26 x-12\) |
\(\text{Equating coefficients:}\)
\(a=-2, \ b=-14, \ c=26, \ d=-12\)
\(\text{Fourth zero:} \ \ x=2\)
A polynomial has the equation
\(Q(x)=(x+1)^2(x-2)\left(x^2+2 x-8\right)\)
--- 6 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=lined) ---
a. \(Q(x) = (x+1)^2(x-2)\left(x^2+2 x-8\right) \)
\(\text{Roots:}\)
\(x=-1 \ \ \text{(multiplicity 2)}\)
\(x=2 \ \ \text{(multiplicity 2)}\)
\(x=4 \ \ \text{(multiplicity 1)}\)
b.
| a. | \(Q(x)\) | \(=(x+1)^2(x-2)\left(x^2+2 x-8\right)\) |
| \(=(x+1)^2(x-2)(x-2)(x+4)\) | ||
| \(=(x+1)^2(x-2)^2(x-4)\) |
\(\text{Roots:}\)
\(x=-1 \ \ \text{(multiplicity 2)}\)
\(x=2 \ \ \text{(multiplicity 2)}\)
\(x=4 \ \ \text{(multiplicity 1)}\)
b. \(Q(x) \ \text{degree}=5, \ \text{Leading coefficient}=1\)
\(\text{As} \ \ x \rightarrow-\infty, y \rightarrow-\infty\)
\(\text{As} \ \ x \rightarrow \infty, y \rightarrow \infty\)
\(\text{At}\ \ x=0, \ y=1^2 \times (-2)^2 \times -4 = -16\)
A polynomial \(f(x)\) is defined by
\(f(x)=-3x^3+27x^2+12x-1\)
Explain what happens to \(f(x)\) as \(x \rightarrow-\infty\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\text{Since}\ f(x) \ \text{has degree 3:}\)
\(\text{As} \ \ x \rightarrow-\infty, x^3 \rightarrow-\infty\)
\(f(x) \ \text{has leading coefficient}=-3\)
\(\therefore\ \text{As} \ \ x \rightarrow-\infty,-3 x^3 \rightarrow \infty, \ f(x) \rightarrow \infty\)
\(\text{Since}\ f(x) \ \text{has degree 3:}\)
\(\text{As} \ \ x \rightarrow-\infty, x^3 \rightarrow-\infty\)
\(f(x) \ \text{has leading coefficient}=-3\)
\(\therefore\ \text{As} \ \ x \rightarrow-\infty,-3 x^3 \rightarrow \infty, \ f(x) \rightarrow \infty\)
Consider a polynomial \(y=(x+3)^2(2-x) \cdot Q(x)\)
where \(Q(x)=6-x-x^2\)
Explain what happens to \(y\) as \(x \rightarrow-\infty\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
| \(y\) | \(=(x+3)^2(2-x)\left(6-x-x^2\right)\) |
| \(=(x+3)^2(2-x)(x+3)(2-x)\) | |
| \(=(x+3)^3(2-x)^2\) |
\(\text{Degree\(=5\), Leading co-efficient\(=1\)}\)
\(\therefore \text{As} \ \ x \rightarrow-\infty, x^5 \rightarrow-\infty, y \rightarrow-\infty\)
| \(y\) | \(=(x+3)^2(2-x)\left(6-x-x^2\right)\) |
| \(=(x+3)^2(2-x)(x+3)(2-x)\) | |
| \(=(x+3)^3(2-x)^2\) |
\(\text{Degree\(=5\), Leading co-efficient\(=1\)}\)
\(\therefore \text{As} \ \ x \rightarrow-\infty, x^5 \rightarrow-\infty, y \rightarrow-\infty\)
Consider the function \(P(x)=(x-1)^2(x+2)\left(x^2+3 x-4\right)\)
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
| a. | \(P(x)\) | \(=(x-1)^2(x+2)\left(x^2+3 x-4\right)\) |
| \(=(x-1)^2(x+2)(x-1)(x+4)\) | ||
| \(=(x-1)^3(x+2)(x+4)\) |
\(\text{Roots:}\)
\(x=-2 \ \ \text{(multiplicity 1)}\)
\(x=-4 \ \ \text{(multiplicity 1)}\)
\(x=1 \ \ \text{(multiplicity 3)}\)
b. \(\text{Degree} \ P(x)=5, \ \ \text {Leading coefficient }=1\)
\(\text{As} \ \ x \rightarrow \infty, \ y \rightarrow \infty\)
\(\text{As} \ \ x \rightarrow -\infty, \ y \rightarrow -\infty\)
\(\text{At} \ \ x=0, y=-8\)
The graph of `y = f(x)` is shown.
Which of the following could be the equation of this graph?
`C`
`text(By elimination:)`
`text(A single negative root occurs when)\ \ x =–1`
`->\ text(Eliminate A and D)`
`text(When)\ \ x = 0, \ y > 0`
`->\ text(Eliminate B)`
`=> C`
\(C\)
\(\text{By elimination:}\)
\(\text{Degree = 3, Leading co-efficient}\ = 5\)
\(\text{As}\ \ x \rightarrow \infty,\ \ y \rightarrow \infty\ \text{(eliminate A and B)}\)
\(\text{When}\ x=1:\)
\(y=-5(-1)(2)=10>0\ \ \text{(eliminate D)}\)
\(\Rightarrow C\)
Consider the polynomial \(P(x)=x(3-x)^3\).
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
The polynomial \(p(x) = x^3 + ax^2 + b\) has a zero at \(r\) and a double zero at 4.
Find the values of \(a, b\) and \(r\). (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(a =-6, b = 32, r = -2\)
\(p(x) = x^3 + ax^2 + b\)
\(\text{Zero at \(r\) and double zero at 4:}\)
| \(p(x)\) | \(=(x-4)^2(x-r) \) | |
| \(=(x^2-8x+16)(x-r)\) | ||
| \(=x^3-8x^2+16x-rx^2+8rx-16r\) | ||
| \(=x^3+(-8-r)x^2+(16+8r)x-16r\) |
\(\text{Equating coefficients:}\)
\(16+8r=0\ \ \Rightarrow \ \ r=-2\)
\(a=-8-(-2)=-6\)
\(b=-16 \times -2=32\)
Consider a polynomial \(y=-2 x^5-26 x^4-x+1\).
With reference to the leading term, explain what happens to \(y\) as \(x \rightarrow-\infty\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\text{As}\ \ x \rightarrow-\infty,\ \ x^{5}\ \rightarrow-\infty\)
\(\text{Since the leading coefficient \((-2)\) is negative:}\)
\(\text{As}\ \ x \rightarrow-\infty,\ \ y \rightarrow \infty.\)
\(\text{As}\ \ x \rightarrow-\infty,\ \ x^{5}\ \rightarrow-\infty\)
\(\text{Since the leading coefficient \((-2)\) is negative:}\)
\(\text{As}\ \ x \rightarrow-\infty,\ \ y \rightarrow \infty.\)
A polynomial has the equation
\(P(x)=(x-1)(x-3)(x+2)^2\left(x^2-x-6\right)\).
--- 5 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=blank) ---
A monic polynomial `p(x)` of degree 4 has one repeated zero of multiplicity 2 and is divisible by `x^2 + x + 1`.
Which of the following could be the graph of `p(x)`?
| A. | B. | ||
| C. | D. |
`C`
`text(S)text(ince)\ p(x)\ text(is monic,)`
`=> p(x) = (x-a)^2(x^2 + x + 1)`
`text(Consider the factor)\ \ (x^2 + x + 1):`
`Delta = sqrt(1^2-4 · 1 · 1) = sqrt(-3) < 0 =>\ text(No roots)`
`:. text(Only root is)\ \ x = a\ \ (text(multiplicity 2))`
`=>\ text(Eliminate)\ \ B and D`
`\text{Since}\ p(x)\ \text{is monic:}`
`text(As)\ \ x -> ∞, \ p(x) -> ∞`
`=>C`