Determine the value of \(x^{\circ}\) in the quadrilateral above, giving reasons for your answer. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Determine the value of \(x^{\circ}\) in the quadrilateral above, giving reasons for your answer. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(30^{\circ}\)
\(\text{Angle sum of quadrilaterals = 360°:} \)
\(360\) | \(=2x + 3x + 4x + 2x \) | |
\(12x^{\circ}\) | \(=360\) | |
\(x^{\circ}\) | \(=\dfrac{360}{12}\) | |
\(=30^{\circ}\) |
A pentagon is pictured below.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. \(540^{\circ}\)
ii. \(110^{\circ}\)
i. \(\text{Pentagon can be divided into 3 triangles (from one chosen vertex).}\)
\(\text{Sum of internal angles}\ = 3 \times 180 = 540^{\circ}\)
ii. \(540\) | \(=x + 2 \times 90 + 135+115 \) | |
\(540\) | \(=x+430\) | |
\(x^{\circ}\) | \(=540-430\) | |
\(=110^{\circ}\) |
Determine the value of the two unknown angles in the quadrilateral above, giving reasons for your answer. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\text{Angle sum of quadrilaterals = 360°:} \)
\(360\) | \(=5x+3x+79+105 \) | |
\(8x\) | \(=360-184\) | |
\(x^{\circ}\) | \(=\dfrac{176}{8}\) | |
\(=22^{\circ}\) |
\(\text{Unknown angle 1}\ = 3 \times 22 = 66^{\circ}\)
\(\text{Unknown angle 2}\ = 5 \times 22 = 110^{\circ}\)
\(\text{Angle sum of quadrilaterals = 360°:} \)
\(360\) | \(=5x+3x+79+105 \) | |
\(8x\) | \(=360-184\) | |
\(x^{\circ}\) | \(=\dfrac{176}{8}\) | |
\(=22^{\circ}\) |
\(\text{Unknown angle 1}\ = 3 \times 22 = 66^{\circ}\)
\(\text{Unknown angle 2}\ = 5 \times 22 = 110^{\circ}\)
\(ABCD\) is a trapezium.
Determine the value of \(x^{\circ}\), giving reasons for your answer. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(67^{\circ}\)
\(DA \parallel CB \ \ (ABCD\ \text{is a trapezium}) \)
\(x+113\) | \(=180\ \ \text{(cointerior angles)} \) | |
\(x^{\circ}\) | \(=180-113\) | |
\(=67^{\circ}\) |
\(ABCD\) is a trapezium.
Determine the value of \(x^{\circ}\), giving reasons for your answer. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(83^{\circ}\)
\(AD \parallel BC \ \ (ABCD\ \text{is a trapezium}) \)
\(x+97\) | \(=180\ \ \text{(cointerior angles)} \) | |
\(x^{\circ}\) | \(=180-97\) | |
\(=83^{\circ}\) |
\(ABCD\) is a parallelogram.
Determine the value of \(a^{\circ}\), giving reasons for your answer. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(AB \parallel DC \ \ \text{(opposite sides of parallelogram)} \)
\(a+125\) | \(=180\ \ \text{(cointerior angles)} \) | |
\(a^{\circ}\) | \(=180-125\) | |
\(=55^{\circ}\) |
\(AB \parallel DC \ \ \text{(opposite sides of parallelogram)} \)
\(a+125\) | \(=180\ \ \text{(cointerior angles)} \) | |
\(a^{\circ}\) | \(=180-125\) | |
\(=55^{\circ}\) |
Find the value of \(a^{\circ}\) in the diagram below. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(132^{\circ}\)
\(\text{Since there are 360° in a quadrilateral:}\)
\(360\) | \(=a+62+85+81\) | |
\(360\) | \(=a+228\) | |
\(a^{\circ}\) | \(=360-228\) | |
\(=132^{\circ}\) |
Find the value of \(x^{\circ}\) in the diagram below. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(81^{\circ}\)
\(\text{Since there are 360° in a quadrilateral:}\)
\(360\) | \(=x+98+108+73\) | |
\(360\) | \(=x+279\) | |
\(x^{\circ}\) | \(=360-279\) | |
\(=81^{\circ}\) |
Find the value of \(a^{\circ}\) in the diagram below. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(60^{\circ}\)
\(\angle BCD\ \text{(reflex)} = 360-130=230^{\circ}\)
\(\text{Since there are 360° in a quadrilateral:}\)
\(360\) | \(=a+40+230+30\) | |
\(360\) | \(=a+300\) | |
\(a^{\circ}\) | \(=360-300\) | |
\(=60^{\circ}\) |
Find the value of \(x^{\circ}\) in the diagram below. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(110^{\circ}\)
\(\text{Since there are 360° in a quadrilateral:}\)
\(360\) | \(=x+55+105+90\) | |
\(360\) | \(=x+250\) | |
\(x^{\circ}\) | \(=360-250\) | |
\(=110^{\circ}\) |
The diagram of a quadrilateral is shown below.
Which name below does not refer to the quadrilateral in the diagram?
\(D\)
\(\text{Vertices need to be named in order (either clockwise or counter clockwise)}\)
\(CBDA\ \text{is not correct as vertex}\ B\ \text{and}\ D\ \text{are not adjacent.}\)
\(\Rightarrow D\)
\(ABCDE\) is a pentagon.
--- 0 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i.
ii. \(ABCDE\ \text{can be divided into 3 triangles.}\)
\(\text{Angle sum of a triangle = 180°}\)
\(\text{Angle sum of}\ ABCDE = 3 \times 180^{\circ} = 540^{\circ}\)
i.
ii. \(ABCDE\ \text{can be divided into 3 triangles.}\)
\(\text{Angle sum of a triangle = 180°}\)
\(\text{Angle sum of}\ ABCDE = 3 \times 180^{\circ} = 540^{\circ}\)
Divide quadrilateral \(ABCD\) into triangles and using the angle sum of one triangle, determine the sum of the internal angles of a quadrilateral. (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
\(ABCD\ \text{can be divided into 2 triangles.}\)
\(\text{Angle sum of a triangle = 180°}\)
\(\text{Angle sum of}\ ABCD = 2 \times 180^{\circ} = 360^{\circ}\)
\(ABCD\ \text{can be divided into 2 triangles.}\)
\(\text{Angle sum of a triangle = 180°}\)
\(\text{Angle sum of}\ ABCD = 2 \times 180^{\circ} = 360^{\circ}\)
Divide quadrilateral \(ABCD\) into triangles and using the angle sum of one triangle, determine the sum of the internal angles of a quadrilateral. (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
\(ABCD\ \text{can be divided into 2 triangles.}\)
\(\text{Angle sum of a triangle = 180°}\)
\(\text{Angle sum of}\ ABCD = 2 \times 180^{\circ} = 360^{\circ}\)
\(ABCD\ \text{can be divided into 2 triangles.}\)
\(\text{Angle sum of a triangle = 180°}\)
\(\text{Angle sum of}\ ABCD = 2 \times 180^{\circ} = 360^{\circ}\)
Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals. (3 marks)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle} \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle} \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \cross \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\end{array}
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle} \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \cross \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\end{array}
Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals. (3 marks)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & \checkmark & \checkmark & \cross \\
\hline
\end{array}
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & \checkmark & \checkmark & \cross \\
\hline
\end{array}
Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals. (3 marks)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \cross \\
\hline
\end{array}
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \cross \\
\hline
\end{array}
A six sided figure is drawn below.
What is the sum of the six interior angles? (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`720^@`
`text(Reflex angle) = 360-90 = 270^@`
`:.\ text(Sum of interior angles)`
`= (270 xx 2) + (30 xx 2) + (60 xx 2)`
`= 720^@`
In the diagram \(AB\) is a straight line.
Calculate the size of the angle marked \(x^{\circ}\), giving reasons for your answer. (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
Pablo creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
What is the size of angle \(x^{\circ}\)? (3 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(\text{135 degrees}\)
Which statement is always true?
`D`
`text{Consider each option:}`
`A:\ \text{Isosceles (not scalene) have two equal angles.}`
`B:\ \text{Only opposite angles in a parallelogram are equal.}`
`C:\ \text{At least one pair of opposite sides of a trapezium are not equal.}`
`D:\ \text{Rhombuses have perpendicular diagonals.}`
`=>D`
Which of these are always equal in length?
`C`
`PQRS` is a parallelogram.
Which of these must be a property of `PQRS`?
`D`
`text{By elimination:}`
`A\ \text{and}\ B\ \text{clearly incorrect.}`
`C\ \text{true if all sides are equal (rhombus) but not true for all parallelograms.}`
`text(Line)\ PS\ text(must be parallel to line)\ QR.`
`=>D`
A closed shape has two pairs of equal adjacent sides.
What is the shape?
`C`
`text(Kite.)`
`text{(Note that a rectangle has a pair of equal opposite sides)}`
`=>C`