The diagram of a quadrilateral is shown below.
Which name below does not refer to the quadrilateral in the diagram?
- quadrilateral \(CDAB\)
- quadrilateral \(BCDA\)
- quadrilateral \(CBAD\)
- quadrilateral \(CBDA\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
The diagram of a quadrilateral is shown below.
Which name below does not refer to the quadrilateral in the diagram?
\(D\)
\(\text{Vertices need to be named in order (either clockwise or counter clockwise)}\)
\(CBDA\ \text{is not correct as vertex}\ B\ \text{and}\ D\ \text{are not adjacent.}\)
\(\Rightarrow D\)
Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals. (3 marks)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle} \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle} \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \cross \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\end{array}
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle} \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \cross \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\end{array}
Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals. (3 marks)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & \checkmark & \checkmark & \cross \\
\hline
\end{array}
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & \checkmark & \checkmark & \cross \\
\hline
\end{array}
Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals. (3 marks)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \cross \\
\hline
\end{array}
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus} \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \cross \\
\hline
\end{array}
Which statement is always true?
`D`
`text{Consider each option:}`
`A:\ \text{Isosceles (not scalene) have two equal angles.}`
`B:\ \text{Only opposite angles in a parallelogram are equal.}`
`C:\ \text{At least one pair of opposite sides of a trapezium are not equal.}`
`D:\ \text{Rhombuses have perpendicular diagonals.}`
`=>D`
Which of these are always equal in length?
`C`
`PQRS` is a parallelogram.
Which of these must be a property of `PQRS`?
`D`
`text{By elimination:}`
`A\ \text{and}\ B\ \text{clearly incorrect.}`
`C\ \text{true if all sides are equal (rhombus) but not true for all parallelograms.}`
`text(Line)\ PS\ text(must be parallel to line)\ QR.`
`=>D`
A closed shape has two pairs of equal adjacent sides.
What is the shape?
`C`
`text(Kite.)`
`text{(Note that a rectangle has a pair of equal opposite sides)}`
`=>C`