SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Properties of Geometric Figures, SM-Bank 039

Determine the value of \(x^{\circ}\) in the quadrilateral above, giving reasons for your answer.     (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(30^{\circ}\)

Show Worked Solution

\(\text{Angle sum of quadrilaterals = 360°:} \)

\(360\) \(=2x + 3x + 4x + 2x \)  
\(12x^{\circ}\) \(=360\)  
\(x^{\circ}\) \(=\dfrac{360}{12}\)  
  \(=30^{\circ}\)  

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-10-Angle sum

Properties of Geometric Figures, SM-Bank 041

A pentagon is pictured below.
 

  1. By drawing triangles from one vertex, or otherwise, calculate the sum of the internal angles of a pentagon.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Determine the value of \(x^{\circ}\) in the pentagon.     (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(540^{\circ}\)

ii.   \(110^{\circ}\)

Show Worked Solution

i.    \(\text{Pentagon can be divided into 3 triangles (from one chosen vertex).}\)

\(\text{Sum of internal angles}\ = 3 \times 180 = 540^{\circ}\)
 

ii.    \(540\) \(=x + 2 \times 90 + 135+115 \)  
\(540\) \(=x+430\)  
\(x^{\circ}\) \(=540-430\)  
  \(=110^{\circ}\)  

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-35-Angle sum 5+ sides, smc-5009-60-Multi-step problems

Properties of Geometric Figures, SM-Bank 040

 

Determine the value of the two unknown angles in the quadrilateral above, giving reasons for your answer.     (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Angle sum of quadrilaterals = 360°:} \)

\(360\) \(=5x+3x+79+105 \)  
\(8x\) \(=360-184\)  
\(x^{\circ}\) \(=\dfrac{176}{8}\)  
  \(=22^{\circ}\)  

 
\(\text{Unknown angle 1}\ = 3 \times 22 = 66^{\circ}\)

\(\text{Unknown angle 2}\ = 5 \times 22 = 110^{\circ}\)

Show Worked Solution

\(\text{Angle sum of quadrilaterals = 360°:} \)

\(360\) \(=5x+3x+79+105 \)  
\(8x\) \(=360-184\)  
\(x^{\circ}\) \(=\dfrac{176}{8}\)  
  \(=22^{\circ}\)  

 
\(\text{Unknown angle 1}\ = 3 \times 22 = 66^{\circ}\)

\(\text{Unknown angle 2}\ = 5 \times 22 = 110^{\circ}\)

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-10-Angle sum, smc-5009-60-Multi-step problems

Properties of Geometric Figures, SM-Bank 038

\(ABCD\) is a trapezium.
 

Determine the value of \(x^{\circ}\), giving reasons for your answer.     (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(67^{\circ}\)

Show Worked Solution

\(DA \parallel CB \ \ (ABCD\ \text{is a trapezium}) \)

\(x+113\) \(=180\ \ \text{(cointerior angles)} \)  
\(x^{\circ}\) \(=180-113\)  
  \(=67^{\circ}\)  

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-60-Multi-step problems

Properties of Geometric Figures, SM-Bank 037

\(ABCD\) is a trapezium.
 

Determine the value of \(x^{\circ}\), giving reasons for your answer.     (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(83^{\circ}\)

Show Worked Solution

\(AD \parallel BC \ \ (ABCD\ \text{is a trapezium}) \)

\(x+97\) \(=180\ \ \text{(cointerior angles)} \)  
\(x^{\circ}\) \(=180-97\)  
  \(=83^{\circ}\)  

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-60-Multi-step problems

Properties of Geometric Figures, SM-Bank 036

\(ABCD\) is a parallelogram.
 

Determine the value of \(a^{\circ}\), giving reasons for your answer.     (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(AB \parallel DC \ \ \text{(opposite sides of parallelogram)} \)

\(a+125\) \(=180\ \ \text{(cointerior angles)} \)  
\(a^{\circ}\) \(=180-125\)  
  \(=55^{\circ}\)  
Show Worked Solution

\(AB \parallel DC \ \ \text{(opposite sides of parallelogram)} \)

\(a+125\) \(=180\ \ \text{(cointerior angles)} \)  
\(a^{\circ}\) \(=180-125\)  
  \(=55^{\circ}\)  

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-60-Multi-step problems

Properties of Geometrical Figures, SM-Bank 035

Find the value of \(a^{\circ}\) in the diagram below.   (2 marks)
 

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(132^{\circ}\)

Show Worked Solution

\(\text{Since there are 360° in a quadrilateral:}\)

\(360\) \(=a+62+85+81\)  
\(360\) \(=a+228\)  
\(a^{\circ}\) \(=360-228\)  
  \(=132^{\circ}\)  

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-10-Angle sum

Properties of Geometrical Figures, SM-Bank 034

Find the value of \(x^{\circ}\) in the diagram below.   (2 marks)
 

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(81^{\circ}\)

Show Worked Solution

\(\text{Since there are 360° in a quadrilateral:}\)

\(360\) \(=x+98+108+73\)  
\(360\) \(=x+279\)  
\(x^{\circ}\) \(=360-279\)  
  \(=81^{\circ}\)  

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-10-Angle sum

Properties of Geometric Figures, SM-Bank 033

Find the value of \(a^{\circ}\) in the diagram below.   (2 marks)
 

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(60^{\circ}\)

Show Worked Solution

\(\angle BCD\ \text{(reflex)} = 360-130=230^{\circ}\)

\(\text{Since there are 360° in a quadrilateral:}\)

\(360\) \(=a+40+230+30\)  
\(360\) \(=a+300\)  
\(a^{\circ}\) \(=360-300\)  
  \(=60^{\circ}\)  

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-10-Angle sum, smc-5009-50-Reflex angles

Properties of Geometric Figures, SM-Bank 032

Find the value of \(x^{\circ}\) in the diagram below.   (2 marks)
 

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(110^{\circ}\)

Show Worked Solution

\(\text{Since there are 360° in a quadrilateral:}\)

\(360\) \(=x+55+105+90\)  
\(360\) \(=x+250\)  
\(x^{\circ}\) \(=360-250\)  
  \(=110^{\circ}\)  

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-10-Angle sum

Properties of Geometric Figures, SM-Bank 031 MC

The diagram of a quadrilateral is shown below. 
 

Which name below does not refer to the quadrilateral in the diagram?

  1. quadrilateral \(CDAB\)
  2. quadrilateral \(BCDA\)
  3. quadrilateral \(CBAD\)
  4. quadrilateral \(CBDA\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Vertices need to be named in order (either clockwise or counter clockwise)}\)

\(CBDA\ \text{is not correct as vertex}\ B\ \text{and}\ D\ \text{are not adjacent.}\)

\(\Rightarrow D\)

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Properties of Geometrical Figures, SM-Bank 030

 \(ABCDE\) is a pentagon.
 

  1. Using point \(A\) as one vertex, divide the pentagon into the maximum number of triangles possible.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

  2. Using the angle sum of one triangle, show that the sum of the internal angles of the pentagon is 540°.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    
         

ii.    \(ABCDE\ \text{can be divided into 3 triangles.}\)

\(\text{Angle sum of a triangle = 180°}\)

\(\text{Angle sum of}\ ABCDE = 3 \times 180^{\circ} = 540^{\circ}\)

Show Worked Solution

i.    
         

ii.    \(ABCDE\ \text{can be divided into 3 triangles.}\)

\(\text{Angle sum of a triangle = 180°}\)

\(\text{Angle sum of}\ ABCDE = 3 \times 180^{\circ} = 540^{\circ}\)

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-35-Angle sum 5+ sides, smc-5009-70-Proofs

Properties of Geometrical Figures, SM-Bank 029

Divide quadrilateral \(ABCD\) into triangles and using the angle sum of one triangle, determine the sum of the internal angles of a quadrilateral.   (2 marks)
 

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(ABCD\ \text{can be divided into 2 triangles.}\)

\(\text{Angle sum of a triangle = 180°}\)

\(\text{Angle sum of}\ ABCD = 2 \times 180^{\circ} = 360^{\circ}\)

Show Worked Solution

\(ABCD\ \text{can be divided into 2 triangles.}\)

\(\text{Angle sum of a triangle = 180°}\)

\(\text{Angle sum of}\ ABCD = 2 \times 180^{\circ} = 360^{\circ}\)

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-10-Angle sum

Properties of Geometric Figures, SM-Bank 028

Divide quadrilateral \(ABCD\) into triangles and using the angle sum of one triangle, determine the sum of the internal angles of a quadrilateral.   (2 marks)
 

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(ABCD\ \text{can be divided into 2 triangles.}\)

\(\text{Angle sum of a triangle = 180°}\)

\(\text{Angle sum of}\ ABCD = 2 \times 180^{\circ} = 360^{\circ}\)

Show Worked Solution

\(ABCD\ \text{can be divided into 2 triangles.}\)

\(\text{Angle sum of a triangle = 180°}\)

\(\text{Angle sum of}\ ABCD = 2 \times 180^{\circ} = 360^{\circ}\)

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-10-Angle sum

Properties of Geometric Figures, SM-Bank 044

Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals.   (3 marks)

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle}  \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\end{array}

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle}  \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \cross \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\end{array}

Show Worked Solution

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle}  \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \cross \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\end{array}

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Properties of Geometric Figures, SM-Bank 043

Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals.   (3 marks)

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\end{array}

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & \checkmark & \checkmark & \cross \\
\hline
\end{array}

Show Worked Solution

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & \checkmark & \checkmark & \cross \\
\hline
\end{array}

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Properties of Geometrical Figures, SM-Bank 042

Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals.   (3 marks)

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \cross \\
\hline
\end{array}

Show Worked Solution

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \cross \\
\hline
\end{array}

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Properties of Geometrical Figures, SM-Bank 010

A six sided figure is drawn below.
  

What is the sum of the six interior angles?   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`720^@`

Show Worked Solution

`text(Reflex angle) = 360-90 = 270^@`

`:.\ text(Sum of interior angles)`

`= (270 xx 2) + (30 xx 2) + (60 xx 2)`

`= 720^@`

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-35-Angle sum 5+ sides, smc-5009-50-Reflex angles

Properties of Geometric Figures, SM-Bank 009 MC

Choon drew a shape. It had one pair of parallel sides and two internal reflex angles.

Which of these could be Choon's shape?

naplan-2015-16mci   naplan-2015-16mcii naplan-2015-16mciv

A B C D
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Internal reflex angles are greater than 180°.}\)
 

\(\Rightarrow D\)

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-50-Reflex angles

Properties of Geometric Figures, SM-Bank 007

In the diagram \(AB\) is a straight line.

Calculate the size of the angle marked \(x^{\circ}\), giving reasons for your answer.    (3 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Equilateral triangle}\ \ \Rightarrow\ \ \text{all angles}\ = 60^{\circ}\)

\(\text{Vertically opposite angles of 60° are equal (see diagram)}\)

\(x^{\circ} = 180-(90+60) = 30^{\circ}\ \ \text{(180° in straight line)}\)

Show Worked Solution

\(\text{Equilateral triangle}\ \ \Rightarrow\ \ \text{all angles}\ = 60^{\circ}\)

\(\text{Vertically opposite angles of 60° are equal (see diagram)}\)

\(x^{\circ} = 180-(90+60) = 30^{\circ}\ \ \text{(180° in straight line)}\)

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-60-Multi-step problems

Properties of Geometric Figures, SM-Bank 006

Pablo creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
 

What is the size of angle \(x^{\circ}\)?   (3 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{135 degrees}\)

Show Worked Solution

\(\text{Isosceles triangle}\ \ \Rightarrow\ \ \text{angles opposite equal sides are equal} \)

\(\text{Since there is 180° in a  straight line:}\)

\(x + 45\) \(= 180\)
\(x^{\circ}\) \(= 135^{\circ}\)

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-60-Multi-step problems

Properties of Geometrical Figures, SM-Bank 005 MC

A regular hexagon is folded in half along the dotted line.
 

 

 
The folded shape can also be called a

  1. pentagon
  2. hexagon
  3. quadrilateral
  4. nonagon
Show Answers Only

`C`

Show Worked Solution

`text{The folded shape is a quadrilateral (four sides).}`

`=>C`

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Special Properties, SMB-013 MC

Which statement is always true?

  1. Scalene triangles have two angles that are equal.
  2. All angles in a parallelogram are equal.
  3. The opposite sides of a trapezium are equal in length.
  4. The diagonals of a rhombus are perpendicular to each other.
Show Answers Only

`D`

Show Worked Solution

`text{Consider each option:}`

`A:\ \text{Isosceles (not scalene) have two equal angles.}`

`B:\ \text{Only opposite angles in a parallelogram are equal.}`

`C:\ \text{At least one pair of opposite sides of a trapezium are not equal.}`

`D:\ \text{Rhombuses have perpendicular diagonals.}`

`=>D`

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Special Properties, SMB-011 MC

The diagonals of which shape below cross at right-angles?

   
A   
     
     B   
     
     C   
   
      D 
Show Answers Only

\(A\)

Show Worked Solution

`text(A rhombus has diagonals that cross at right-angles.)`

\(\Rightarrow A \)

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Special Properties, SMB-010 MC

Which of these are always equal in length?

  1. the diagonals of a rhombus
  2. the diagonals of a parallelogram
  3. the opposite sides of a parallelogram
  4. the opposite sides of a trapezium
Show Answers Only

`C`

Show Worked Solution

`text{Consider each option:}`

`A:\ \text{rhombus diagonals are perpendicular but not always equal}`

`B:\ \text{parallelogram diagonals not always equal (see below)}`

`C:\ \text{always true (see above)}`

`D:\ \text{at least 1 pair of opposite sides of a trapezium are not equal}`
\(\Rightarrow C\)

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Special Properties, SMB-009 MC

`PQRS` is a parallelogram.

Which of these must be a property of `PQRS`?

  1. Line `PS` is perpendicular to line `PQ`.
  2. Line `PQ` is parallel to line `PS`.
  3. Diagonals `PR` and `SQ` are perpendicular.
  4. Line `PS` is parallel to line `QR`.
Show Answers Only

`D`

Show Worked Solution

`text{By elimination:}`

`A\ \text{and}\ B\ \text{clearly incorrect.}`

`C\ \text{true if all sides are equal (rhombus) but not true for all parallelograms.}`

`text(Line)\ PS\ text(must be parallel to line)\ QR.`

`=>D`

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Special Properties, SMB-007 MC

A closed shape has two pairs of equal adjacent sides.

What is the shape?

  1. rectangle
  2. trapezium
  3. kite
  4. triangle
Show Answers Only

`C`

Show Worked Solution

`text(Kite.)`

`text{(Note that a rectangle has a pair of equal opposite sides)}`

`=>C`

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Copyright © 2014–2025 SmarterEd.com.au · Log in