SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Logarithm, SMB-024

Solve  `log_9 27=x`  for `x`.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`3/2`

Show Worked Solution
`log_9 27` `=x`  
`9^x` `=27\ \ text{(by log definition)}`  
`log_10 9^x` `=log_10 27`  
`x log_10 9` `=log_10 27`  
`x` `=(log_10 27)/(log_10 9)`  
  `=3/2`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-05-Solve by log definition, smc-4243-70-Solve exponentials

Logarithm, SMB-023

Solve  `log_16 2=x`  for `x`.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`0.25`

Show Worked Solution
`log_16 2` `=x`  
`16^x` `=2`  
`log_10 16^x` `=log_10 2`  
`x log_10 16` `=log_10 2`  
`x` `=(log_10 2)/(log_10 16)`  
  `=0.25`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-05-Solve by log definition, smc-4243-70-Solve exponentials

Logarithm, SMB-022

Solve  `4^(x-1)=84`  for `x`, giving your answer correct to 1 decimal place.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`4.2`

Show Worked Solution
`4^(x-1)` `=84`  
`log_10 4^(x-1)` `=log_10 84`  
`(x-1)log_10 4` `=log_10 84`  
`x-1` `=(log_10 84)/(log_10 4)`  
`x` `=(log_10 84)/(log_10 4)+1`  
  `=4.196…`  
  `=4.2\ text{(to 1 d.p.)}`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-70-Solve exponentials

Logarithm, SMB-021

Solve  `3^a=28`  for `a`, giving your answer correct to 2 decimal places.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`3.03`

Show Worked Solution
`3^a` `=28`  
`log_10 3^a` `=log_10 28`  
`a xx log_10 3` `=log_10 28`  
`a` `=(log_10 28)/(log_10 3)`  
  `=3.033…`  
  `=3.03`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-70-Solve exponentials

Logarithm, SMB-020

Solve  `4^(x+1)=32`  for `x`.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`3/2`

Show Worked Solution
`4^(x+1)` `=32`  
`log_10 4^(x+1)` `=log_10 32`  
`(x+1) log_10 4` `=log_10 32`  
`x+1` `=(log_10 32)/(log_10 4)`  
`x` `=5/2-1`  
  `=3/2`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-70-Solve exponentials

Logarithm, SMB-019

Solve  `2^t=16` .  (2 marks)

Show Answers Only

`4`

Show Worked Solution
`2^t` `=16`  
`log_10 2^t` `=log_10 16`  
`t xx log_10 2` `=log_10 16`  
`t` `=(log_10 16)/(log_10 2)`  
  `=4`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-70-Solve exponentials

Logarithm, SMB-018

Evaluate  `log_a 6`  given  `log_a 2=0.62`  and  `log_a 24=2.67`.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`1.43`

Show Worked Solution
`log_a 6` `=log_a (24/4)`  
  `=log_a 24-log_b 2^2`  
  `=log_a 24-2log_a 2`  
  `=2.67-2 xx 0.62`  
  `=1.43`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithm, SMB-017

Evaluate  `log_b 2`  given  `log_b 6=1.47`  and  `log_b 12=2.18`.  (2 marks)

Show Answers Only

`0.71`

Show Worked Solution
`log_b 2` `=log_b (12/6)`  
  `=log_b 12-log_b 6`  
  `=2.18-1.47`  
  `=0.71`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithm, SMB-016

Evaluate  `log_c 12`  given  `log_c 3=1.02`  and  `log_c 4=1.35`.  (2 marks)

Show Answers Only

`2.37`

Show Worked Solution
`log_c 12` `=log_c (3xx4)`  
  `=log_c 3+log_c 4`  
  `=1.02+1.35`  
  `=2.37`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-015

Evaluate  `log_x 20`  given  `log_x 2=0.458`  and  `log_x 5=0.726`.  (2 marks)

Show Answers Only

`1.642`

Show Worked Solution
`log_x 20` `=log_x (4xx5)`  
  `=log_x (2^2xx 5)`  
  `=2log_x 2+log_x 5`  
  `=2 xx 0.458 + 0.726`  
  `=1.642`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-014

Evaluate  `log_a 15`  given  `log_a 3=0.378`  and  `log_a 5=0.591`.  (2 marks)

Show Answers Only

`0.969`

Show Worked Solution
`log_a 15` `=log_a (3xx5)`  
  `=log_a 3+log_a 5`  
  `=0.378 + 0.591`  
  `=0.969`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-013

Evaluate  `log_a 18`  given  `log_a 2=0.431`  and  `log_a 3=0.683`.  (2 marks)

Show Answers Only

`1.797`

Show Worked Solution
`log_a 18` `=log_a (3^2xx2)`  
  `=log_a 3^2+log_a 2`  
  `=2log_a 3+log_a 2`  
  `=2 xx 0.683 + 0.431`  
  `=1.797`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithm, SMB-012

Solve the equation  `log_9 x=-3/2`.  (2 marks)

Show Answers Only

`x = 1/27`

Show Worked Solution
`log_9 x` `=-3/2`  
`x` `=9^(-3/2)`  
  `=1/(sqrt9)^3`  
  `=1/27`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-05-Solve by log definition

Logarithms, SMB-011

Solve the equation  `log_4 x=3/2`.  (2 marks)

Show Answers Only

`x = 8`

Show Worked Solution
`log_4 x` `=3/2`  
`x` `=4^(3/2)`  
  `=8`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-05-Solve by log definition

Logarithms, SMB-010

Solve the equation  `2 log_2(x + 5)-log_2(x + 9) = 1`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`x = text{−1}`

Show Worked Solution
`2 log_2(x + 5)-log_2(x + 9)` `= 1`
`log_2(x + 5)^2-log_2(x + 9)` `= 1`
`log_2(((x + 5)^2)/(x + 9))` `= 1`
`((x + 5)^2)/(x + 9)` `= 2`
`x^2 + 10x + 25` `= 2x + 18`
`x^2 + 8x + 7` `= 0`
`(x + 7)(x + 1)` `= 0`

 
`:. x = -1\ \ \ \ (x != text{−7}\ \ text(as)\ \ x > text{−5})`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules, smc-4243-30-Power rule, smc-4243-60-Quadratic

Logarithms, SMB-009

What is the solution to the equation  `log_3(a-1) = -2`?  (2 marks)

Show Answers Only

`a=10/9`

Show Worked Solution
`log_3 (a-1)` `= -2`
`a-1` `= 3^{-2}`
`a` `=1/3^2+1`
  `= 10/9`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-05-Solve by log definition

L&E, 2ADV E1 2008 HSC 7a

Solve  `log_2 x-3/log_2 x=2`   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`x=8\ \ text(or)\ \ 1/2`

Show Worked Solution
 
IMPORTANT: Students should recognise this equation as a quadratic, and the best responses substituted `log_2 x` with a variable such as `X`.
`log_2 x-3/(log_2 x)` `=2`
`(log_2 x)^2-3` `=2log_2 x`
`(log_2 x)^2-2log_2 x-3` `=0`
   
`text(Let)\  X=log_2 x`  
`:.\ X^2-2X-3` `=0`
`(X-3)(X+1)` `=0`
MARKER’S COMMENT: Many responses incorrectly stated that there is no solution to `log_2 x=-1` or could not find `x` given `log_2 x=3`.
`X` `=3` `\ \ \ \ \ \ \ \ \ \ ` `X` `=-1`
`log_2 x` `=3` `\ \ \ \ \ \ \ \ \ \ ` `log_2 x` `=-1`
`x` `=2^3=8` `\ \ \ \ \ \ \ \ \ \ ` `x` `=2^{-1}=1/2`

 

`:.x=8\ \ text(or)\ \ 1/2`

Filed Under: Logarithms Tagged With: num-title-ct-patha, num-title-qs-hsc, smc-4243-60-Quadratic

Logarithms, SMB-008

What is the solution to the equation  `log_3 x = -1`?  (1 mark)

Show Answers Only

`x=1/3`

Show Worked Solution
`log_3 x` `=-1`
`x` `=3^{-1}`
  `=1/3`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-05-Solve by log definition

Logarithms, SMB-007

Use the change of base formula to evaluate  `log_7 13`, correct to two decimal places.  (1 mark)

Show Answers Only

`1.32\ \ text{(to 2 d.p.)}`

Show Worked Solution
`log_7 13` `= (log_10 13)/(log_10 7)`
  `= 1.3181…`
  `= 1.32\ \ text{(to 2 d.p.)}`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-50-Change of base

Logarithms, SMB-006 MC

The expression

`log_c(a) + log_a(b) + log_b(c)`

is equal to

  1. `1/(log_c(a)) + 1/(log_a(b)) + 1/(log_b(c))`
  2. `1/(log_a(c)) + 1/(log_b(a)) + 1/(log_c(b))`
  3. `-1/(log_a(b))-1/(log_b(c))-1/(log_c(a))`
  4. `1/(log_a(a)) + 1/(log_b(b)) + 1/(log_c(c))`
Show Answers Only

`B`

Show Worked Solution

`text(Solution 1)`

`text(Using Change of Base:)`

`log_c(a) + log_a(b) + log_b(c)`

`=(log_a(a))/(log_a(c)) + (log_b(b))/(log_b(a)) + (log_c(c))/(log_c(b))`

`=1/(log_a(c)) + 1/(log_b(a)) + 1/(log_c(b))`

 
`=> B`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-50-Change of base

Logarithms, SMB-005

Solve  `log_3(t)-log_3(t^2-4) = -1`  for  `t`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`4 `

Show Worked Solution
`log_3(t)-log_3(t^2-4)` `= -1`
`log_3 ({t}/{t^2-4})` `= -1`
`(t)/(t^2-4)` `= (1)/(3)`
`t^2-4` `= 3t`
`t^2-3t – 4` `= 0`
`(t-4)(t+ 1)` `= 0`

 
`:. t=4 \ \ \ (t > 0, \ t!= –1)`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-004

Solve  `log_2(6-x)-log_2(4-x) = 2`  for `x`, where  `x < 4`.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`10/3`

Show Worked Solution

`text(Simplify using log laws:)`

`log_2((6-x)/(4-x))` `= 2`
`2^2` `= (6-x)/(4-x)`
`16-4x` `= 6-x`
`3x` `= 10`
`:. x` `= 10/3`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-003

Solve the equation  `2 log_3(5)-log_3 (2) + log_3 (x) = 2`  for  `x.`  (2 marks)

Show Answers Only

`18/25`

Show Worked Solution
`log_3 (5)^2-log_3 (2) + log_3 (x)` `= 2`
`log_3 (25x)-log_3 (2)` `=2`
`log_3 ((25 x)/2)` `= 2`
`(25x)/2` `= 3^2`
`:. x` `= 18/25`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-002

Solve the equation  `log_3(3x + 5) + log_3(2) = 2`,  for `x`.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`x =-1/6`

Show Worked Solution

`text(Simplify using log laws:)`

`log_3(2(3x + 5))` `=2`
`log_3(6x + 10)` `=2`
`6x +10` `=9`
`6x` `= -1`
`x` `=-1/6`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-001 MC

It is given that  `log_10 a = log_10 b-log_10 c`, where  `a, b, c > 0.`

Which statement is true?

  1. `a = b-c`
  2. `a = b/c`
  3. `log_10 a = b/c`
  4. `log_10 a = (log_10 b)/(log_10 c)`
Show Answers Only

`B`

Show Worked Solution
Mean mark 51%.
COMMENT: Use of log laws here proved difficult for many students.
`log_10 a` `= log_10 b-log_10 c`
`log_10 a` `= log_10 (b/c)`
`:. a` `= b/c`

 
`=>  B`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

L&E, 2ADV E1 2019 HSC 5 MC

Which of the following is equal to  `(log_2 9)/(log_2 3)`?

  1. `2`
  2. `3`
  3. `log_2 3`
  4. `log_2 6`
Show Answers Only

`A`

Show Worked Solution
`(log_2 9)/(log_2 3)` `= (log_2 3^2)/(log_2 3)`
  `= (2 log_2 3)/(log_2 3)`
  `= 2`

 
`=>  A`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Logarithms Tagged With: Band 4, num-title-ct-patha, num-title-qs-hsc, smc-4243-30-Power rule, smc-6455-20-Logs - Power Rule, smc-963-20-Log - power rule

L&E, 2ADV E1 2016 HSC 14e

Write  `log 2 + log 4 + log 8 + … + log 512`  in the form  `a log b`  where `a` and `b` are integers greater than `1.`  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`45 log 2`

Show Worked Solution

`log 2 + log 4 + log 8 + … + log 512`

`= log 2^1 + log 2^2 + log2^3 + … + log 2^9`

`= log 2 + 2 log 2 + 3 log 2 + … + 9 log 2`

`= 45 log 2`

♦ Mean mark 40%.
 
TIP: Note that `log 2 = log_10 2`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations, Logarithms Tagged With: Band 5, num-title-ct-patha, num-title-qs-hsc, smc-4243-30-Power rule, smc-6455-20-Logs - Power Rule, smc-963-20-Log - power rule

L&E, 2ADV E1 2005 HSC 5a

Use the change of base formula to evaluate  `log_3 7`, correct to two decimal places.  (1 mark)

Show Answers Only

`1.77\ \ text{(to 2 d.p.)}`

Show Worked Solution
`log_3 7` `= (log_10 7)/(log_10 3)`
  `= 1.771…`
  `= 1.77\ \ text{(to 2 d.p.)}`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations, Logarithms Tagged With: Band 3, num-title-ct-patha, num-title-qs-hsc, smc-4243-50-Change of base, smc-6455-30-Logs - COB Rule, smc-963-30-Log - COB rule

L&E, 2ADV E1 2014 HSC 3 MC

What is the solution to the equation  `log_2(x-1) = 8`? 

  1. `4`
  2. `17`
  3. `65`
  4. `257`
Show Answers Only

`D`

Show Worked Solution
`log_2 (x-1)` `= 8`
`x-1` `= 2^8`
`x` `= 257`

 
`=>  D`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations, Logarithms Tagged With: Band 4, num-title-ct-patha, num-title-qs-hsc, smc-4243-05-Solve by log definition, smc-6455-40-Logs - Other, smc-963-40-Log - Other

L&E, 2ADV E1 2013 HSC 9 MC

What is the solution of   `5^x=4`?

  1. `x=(log_2 4)/5`
  2. `x=4/(log_2 5)`
  3. `x=(log_2 4)/(log_2 5)`
  4. `x=log_2(4/5)`

 

Show Answer Only

 `C`

Show Worked Solutions
`5^x` `=4`
`log_2 5^x` `=log_2 4`
`x  log_2 5` `=log_2 4`
`:.x` `=(log_2 4)/(log_2 5)`

 
`=>C`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations, Logarithms Tagged With: Band 4, num-title-ct-patha, num-title-qs-hsc, smc-4243-50-Change of base, smc-6455-20-Logs - Power Rule, smc-963-20-Log - power rule

Copyright © 2014–2025 SmarterEd.com.au · Log in