Solve `log_9 27=x` for `x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Solve `log_9 27=x` for `x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`3/2`
`log_9 27` | `=x` | |
`9^x` | `=27\ \ text{(by log definition)}` | |
`log_10 9^x` | `=log_10 27` | |
`x log_10 9` | `=log_10 27` | |
`x` | `=(log_10 27)/(log_10 9)` | |
`=3/2` |
Solve `log_16 2=x` for `x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`0.25`
`log_16 2` | `=x` | |
`16^x` | `=2` | |
`log_10 16^x` | `=log_10 2` | |
`x log_10 16` | `=log_10 2` | |
`x` | `=(log_10 2)/(log_10 16)` | |
`=0.25` |
Solve `4^(x-1)=84` for `x`, giving your answer correct to 1 decimal place. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`4.2`
`4^(x-1)` | `=84` | |
`log_10 4^(x-1)` | `=log_10 84` | |
`(x-1)log_10 4` | `=log_10 84` | |
`x-1` | `=(log_10 84)/(log_10 4)` | |
`x` | `=(log_10 84)/(log_10 4)+1` | |
`=4.196…` | ||
`=4.2\ text{(to 1 d.p.)}` |
Solve `3^a=28` for `a`, giving your answer correct to 2 decimal places. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`3.03`
`3^a` | `=28` | |
`log_10 3^a` | `=log_10 28` | |
`a xx log_10 3` | `=log_10 28` | |
`a` | `=(log_10 28)/(log_10 3)` | |
`=3.033…` | ||
`=3.03` |
Solve `4^(x+1)=32` for `x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`3/2`
`4^(x+1)` | `=32` | |
`log_10 4^(x+1)` | `=log_10 32` | |
`(x+1) log_10 4` | `=log_10 32` | |
`x+1` | `=(log_10 32)/(log_10 4)` | |
`x` | `=5/2-1` | |
`=3/2` |
Solve `2^t=16` . (2 marks)
`4`
`2^t` | `=16` | |
`log_10 2^t` | `=log_10 16` | |
`t xx log_10 2` | `=log_10 16` | |
`t` | `=(log_10 16)/(log_10 2)` | |
`=4` |
Evaluate `log_a 6` given `log_a 2=0.62` and `log_a 24=2.67`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`1.43`
`log_a 6` | `=log_a (24/4)` | |
`=log_a 24-log_b 2^2` | ||
`=log_a 24-2log_a 2` | ||
`=2.67-2 xx 0.62` | ||
`=1.43` |
Evaluate `log_b 2` given `log_b 6=1.47` and `log_b 12=2.18`. (2 marks)
`0.71`
`log_b 2` | `=log_b (12/6)` | |
`=log_b 12-log_b 6` | ||
`=2.18-1.47` | ||
`=0.71` |
Evaluate `log_c 12` given `log_c 3=1.02` and `log_c 4=1.35`. (2 marks)
`2.37`
`log_c 12` | `=log_c (3xx4)` | |
`=log_c 3+log_c 4` | ||
`=1.02+1.35` | ||
`=2.37` |
Evaluate `log_x 20` given `log_x 2=0.458` and `log_x 5=0.726`. (2 marks)
`1.642`
`log_x 20` | `=log_x (4xx5)` | |
`=log_x (2^2xx 5)` | ||
`=2log_x 2+log_x 5` | ||
`=2 xx 0.458 + 0.726` | ||
`=1.642` |
Evaluate `log_a 15` given `log_a 3=0.378` and `log_a 5=0.591`. (2 marks)
`0.969`
`log_a 15` | `=log_a (3xx5)` | |
`=log_a 3+log_a 5` | ||
`=0.378 + 0.591` | ||
`=0.969` |
Evaluate `log_a 18` given `log_a 2=0.431` and `log_a 3=0.683`. (2 marks)
`1.797`
`log_a 18` | `=log_a (3^2xx2)` | |
`=log_a 3^2+log_a 2` | ||
`=2log_a 3+log_a 2` | ||
`=2 xx 0.683 + 0.431` | ||
`=1.797` |
Solve the equation `log_9 x=-3/2`. (2 marks)
`x = 1/27`
`log_9 x` | `=-3/2` | |
`x` | `=9^(-3/2)` | |
`=1/(sqrt9)^3` | ||
`=1/27` |
Solve the equation `log_4 x=3/2`. (2 marks)
`x = 8`
`log_4 x` | `=3/2` | |
`x` | `=4^(3/2)` | |
`=8` |
Solve the equation `2 log_2(x + 5)-log_2(x + 9) = 1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x = text{−1}`
`2 log_2(x + 5)-log_2(x + 9)` | `= 1` |
`log_2(x + 5)^2-log_2(x + 9)` | `= 1` |
`log_2(((x + 5)^2)/(x + 9))` | `= 1` |
`((x + 5)^2)/(x + 9)` | `= 2` |
`x^2 + 10x + 25` | `= 2x + 18` |
`x^2 + 8x + 7` | `= 0` |
`(x + 7)(x + 1)` | `= 0` |
`:. x = -1\ \ \ \ (x != text{−7}\ \ text(as)\ \ x > text{−5})`
What is the solution to the equation `log_3(a-1) = -2`? (2 marks)
`a=10/9`
`log_3 (a-1)` | `= -2` |
`a-1` | `= 3^{-2}` |
`a` | `=1/3^2+1` |
`= 10/9` |
Solve `log_2 x-3/log_2 x=2` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x=8\ \ text(or)\ \ 1/2`
`log_2 x-3/(log_2 x)` | `=2` |
`(log_2 x)^2-3` | `=2log_2 x` |
`(log_2 x)^2-2log_2 x-3` | `=0` |
`text(Let)\ X=log_2 x` | |
`:.\ X^2-2X-3` | `=0` |
`(X-3)(X+1)` | `=0` |
`X` | `=3` | `\ \ \ \ \ \ \ \ \ \ ` | `X` | `=-1` |
`log_2 x` | `=3` | `\ \ \ \ \ \ \ \ \ \ ` | `log_2 x` | `=-1` |
`x` | `=2^3=8` | `\ \ \ \ \ \ \ \ \ \ ` | `x` | `=2^{-1}=1/2` |
`:.x=8\ \ text(or)\ \ 1/2`
What is the solution to the equation `log_3 x = -1`? (1 mark)
`x=1/3`
`log_3 x` | `=-1` |
`x` | `=3^{-1}` |
`=1/3` |
Use the change of base formula to evaluate `log_7 13`, correct to two decimal places. (1 mark)
`1.32\ \ text{(to 2 d.p.)}`
`log_7 13` | `= (log_10 13)/(log_10 7)` |
`= 1.3181…` | |
`= 1.32\ \ text{(to 2 d.p.)}` |
The expression
`log_c(a) + log_a(b) + log_b(c)`
is equal to
`B`
`text(Solution 1)`
`text(Using Change of Base:)`
`log_c(a) + log_a(b) + log_b(c)`
`=(log_a(a))/(log_a(c)) + (log_b(b))/(log_b(a)) + (log_c(c))/(log_c(b))`
`=1/(log_a(c)) + 1/(log_b(a)) + 1/(log_c(b))`
`=> B`
Solve `log_3(t)-log_3(t^2-4) = -1` for `t`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`4 `
`log_3(t)-log_3(t^2-4)` | `= -1` |
`log_3 ({t}/{t^2-4})` | `= -1` |
`(t)/(t^2-4)` | `= (1)/(3)` |
`t^2-4` | `= 3t` |
`t^2-3t – 4` | `= 0` |
`(t-4)(t+ 1)` | `= 0` |
`:. t=4 \ \ \ (t > 0, \ t!= –1)`
Solve `log_2(6-x)-log_2(4-x) = 2` for `x`, where `x < 4`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`10/3`
`text(Simplify using log laws:)`
`log_2((6-x)/(4-x))` | `= 2` |
`2^2` | `= (6-x)/(4-x)` |
`16-4x` | `= 6-x` |
`3x` | `= 10` |
`:. x` | `= 10/3` |
Solve the equation `2 log_3(5)-log_3 (2) + log_3 (x) = 2` for `x.` (2 marks)
`18/25`
`log_3 (5)^2-log_3 (2) + log_3 (x)` | `= 2` |
`log_3 (25x)-log_3 (2)` | `=2` |
`log_3 ((25 x)/2)` | `= 2` |
`(25x)/2` | `= 3^2` |
`:. x` | `= 18/25` |
Solve the equation `log_3(3x + 5) + log_3(2) = 2`, for `x`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`x =-1/6`
`text(Simplify using log laws:)`
`log_3(2(3x + 5))` | `=2` |
`log_3(6x + 10)` | `=2` |
`6x +10` | `=9` |
`6x` | `= -1` |
`x` | `=-1/6` |
It is given that `log_10 a = log_10 b-log_10 c`, where `a, b, c > 0.`
Which statement is true?
`B`
`log_10 a` | `= log_10 b-log_10 c` |
`log_10 a` | `= log_10 (b/c)` |
`:. a` | `= b/c` |
`=> B`
Which of the following is equal to `(log_2 9)/(log_2 3)`?
`A`
`(log_2 9)/(log_2 3)` | `= (log_2 3^2)/(log_2 3)` |
`= (2 log_2 3)/(log_2 3)` | |
`= 2` |
`=> A`
Write `log 2 + log 4 + log 8 + … + log 512` in the form `a log b` where `a` and `b` are integers greater than `1.` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`45 log 2`
`log 2 + log 4 + log 8 + … + log 512`
`= log 2^1 + log 2^2 + log2^3 + … + log 2^9`
`= log 2 + 2 log 2 + 3 log 2 + … + 9 log 2`
`= 45 log 2`
Use the change of base formula to evaluate `log_3 7`, correct to two decimal places. (1 mark)
`1.77\ \ text{(to 2 d.p.)}`
`log_3 7` | `= (log_10 7)/(log_10 3)` |
`= 1.771…` | |
`= 1.77\ \ text{(to 2 d.p.)}` |
What is the solution to the equation `log_2(x-1) = 8`?
`D`
`log_2 (x-1)` | `= 8` |
`x-1` | `= 2^8` |
`x` | `= 257` |
`=> D`
What is the solution of `5^x=4`?
`C`
`5^x` | `=4` |
`log_2 5^x` | `=log_2 4` |
`x log_2 5` | `=log_2 4` |
`:.x` | `=(log_2 4)/(log_2 5)` |
`=>C`