Find \(\theta\), to the nearest degree, such that
\(\dfrac{12}{\sin \theta} = \dfrac{15}{\sin 26^{\circ}} \) (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find \(\theta\), to the nearest degree, such that
\(\dfrac{12}{\sin \theta} = \dfrac{15}{\sin 26^{\circ}} \) (2 marks)
\(\theta=21^{\circ}\)
\(\dfrac{12}{\sin \theta}\) | \(= \dfrac{15}{\sin 26^{\circ}} \) | |
\(\dfrac{\sin \theta}{12}\) | \(= \dfrac{\sin 26^{\circ}}{15} \) | |
\(\sin \theta\) | \(= \dfrac{12 \times \sin 26^{\circ}}{15}\) | |
\(\theta\) | \(=\sin^{-1} (0.3507) \) | |
\(=21^{\circ}\ \text{(nearest degree)} \) |
Find the value of \(x\), correct to 1 decimal place. (2 marks)
\(x=9.9\ \text{cm}\)
\(\text{Angle needed}\ = 180-(115+34) = 31^{\circ}\)
\(\dfrac{x}{\sin31^{\circ}}\) | \(=\dfrac{17.5}{\sin 115^{\circ}}\) | |
\(x\) | \(=\dfrac{17.5 \times \sin 31^{\circ}}{\sin 115^{\circ}}\) | |
\(=9.94…\) | ||
\(=9.9\ \text{cm (to 1 d.p.)}\) |
Find the value of \(x\), correct to 1 decimal place. (2 marks)
\(x=7.2\ \text{cm}\)
\(\text{Angle needed}\ = 180-(81+43) = 56^{\circ}\)
\(\dfrac{x}{\sin56^{\circ}}\) | \(=\dfrac{8.6}{\sin 81^{\circ}}\) | |
\(x\) | \(=\dfrac{8.6 \times \sin 56^{\circ}}{\sin 81^{\circ}}\) | |
\(=7.218…\) | ||
\(=7.2\ \text{cm (to 1 d.p.)}\) |
Find the value of \(x\), correct to 1 decimal place. (2 marks)
\(x=8.0\ \text{cm}\)
\(\dfrac{x}{\sin42^{\circ}}\) | \(=\dfrac{12}{\sin 86^{\circ}}\) | |
\(x\) | \(=\dfrac{12 \times \sin 42^{\circ}}{\sin 86^{\circ}}\) | |
\(=8.049…\) | ||
\(=8.0\ \text{cm (to 1 d.p.)}\) |
Find the value of \(x\), correct to 1 decimal place. (2 marks)
\(x=13.9\ \text{m}\)
\(\dfrac{x}{\sin43^{\circ}}\) | \(=\dfrac{20}{\sin 78^{\circ}}\) | |
\(x\) | \(=\dfrac{20 \times \sin 43^{\circ}}{\sin 78^{\circ}}\) | |
\(=13.944…\) | ||
\(=13.9\ \text{cm (to 1 d.p.)}\) |
Solve for \(b\), giving your answer correct to 1 decimal place.
\(\dfrac{b}{\sin 22^{\circ}} = \dfrac{17}{\sin 67^{\circ}}\) (2 marks)
\(b=6.9\)
\(\dfrac{b}{\sin 22^{\circ}}\) | \(= \dfrac{17}{\sin 67^{\circ}}\) |
\(b\) | \(=\dfrac{17 \times \sin 22^{\circ}}{\sin 67^{\circ}}\) |
\(=6.9\ \text{(to 1 d.p.)}\) |
Solve for \(a\), giving your answer correct to 1 decimal place.
\(\dfrac{6}{\sin 53^{\circ}} = \dfrac{a}{\sin 27^{\circ}}\) (2 marks)
\(a=3.4\)
\(\dfrac{6}{\sin 53^{\circ}}\) | \(= \dfrac{a}{\sin 27^{\circ}}\) |
\(a\) | \(=\dfrac{6 \times \sin 27^{\circ}}{\sin 53^{\circ}}\) |
\(=3.4\ \text{(to 1 d.p.)}\) |
The diagram shows triangle `ABC`.
Calculate the area of the triangle, to the nearest square metre. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`147\ text{m}^2`
`text{Using the sine rule:}`
`(CB)/sin60^@` | `=12/sin25^@` | |
`CB` | `=sin60^@ xx 12/sin25^@` | |
`=24.590…` |
`angleACB=180-(60+25)=95^@\ \ text{(180° in Δ)}`
`text{Using the sine rule (Area):}`
`A` | `=1/2 xx AC xx CB xx sin angleACB` | |
`=1/2 xx 12 xx 24.59 xx sin95^@` | ||
`=146.98…` | ||
`=147\ text{m}^2` |
Find the centre and radius of the circle with the equation
`x^2+6x+y^2-y+3=0` (2 marks)
`text{Centre}\ (-3,1/2),\ text{Radius}\ = 5/2`
`x^2+6x+y^2-y+3` | `=0` | |
`x^2+6x+9+y^2-y+1/4-25/4` | `=0` | |
`(x+3)^2+(y-1/2)^2` | `=25/4` | |
`(x+3)^2+(y-1/2)^2` | `=(5/2)^2` |
`text{Centre}\ (-3,1/2),\ text{Radius}\ = 5/2`
--- 4 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
Find the centre and radius of the circle with the equation
`x^2+ y^2+8y= 0` (2 marks)
`text(Centre)\ (0,-4)`
`text(Radius = 4)`
`x^2+ y^2+8y` | `= 0` |
`x^2+ y^2+8y+16-16` | `= 0` |
`x^2+(y+4)^2` | `= 4^2` |
`:.\ text(Centre)\ (0,-4)`
`:.\ text(Radius = 4)`
Find the centre and radius of the circle with the equation
`x^2+10x + y^2-6y+33 = 0` (2 marks)
`text(Centre)\ (-5,3)`
`text(Radius = 1)`
`x^2+10x + y^2-6y+33` | `= 0` |
`x^2+10x + 25 + y^2-6y+9-1` | `= 0` |
`(x+5)^2 + (y-3)^2` | `= 1` |
`:.\ text(Centre)\ (-5,3)`
`:.\ text(Radius = 1)`
--- 4 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
a. `(x+3)^2 + (y+2)^2 = 3^2`
`:.\ text(Centre:)\ (-3,-2)\text(, Radius:)\ 3`
b.
a. | `x^2+6x+y^2+4y+4` | `=0` |
`x^2+6x+9+y^2+4y+4-9` | `=0` | |
`(x+3)^2+(y+2)^2` | `=3^2` |
`:.\ text(Centre:)\ (-3,-2)\text(, Radius:)\ 3`
b.
--- 2 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
a. `(x-1)^2 + (y+2)^2 = 4`
b.
a. `text{Circle with centre}\ (1,-2),\ r = 2:`
`(x-1)^2 + (y+2)^2 = 4`
b.
Write down the equation of the circle with centre `(0, -3)` and radius 4. (1 mark)
`x^2 + (y+3)^2 = 16`
`text{Circle with centre}\ (0, -3),\ r = 4:`
`x^2 + (y+3)^2 = 16`
Find the centre and radius of the circle with the equation
`x^2-12x + y^2 + 2y-12 = 0` (2 marks)
`text(Centre)\ (6, −1)`
`text(Radius = 7)`
`x^2-12x + y^2 + 2y-12` | `= 0` |
`(x-6)^2 + (y + 1)^2-36-1-12` | `= 0` |
`(x-6)^2 + (y + 1)^2` | `= 49` |
`:.\ text(Centre)\ (6, −1)`
`:.\ text(Radius = 7)`
A circle with centre `(a,-2)` and radius 5 units has equation
`x^2-6x + y^2 + 4y = b` where `a` and `b` are real constants.
The values of `a` and `b` are respectively
`B`
`x^2-6x + y^2 + 4y=b`
`text(Completing the squares:)`
`x^2-6x + 3^2-9 + y^2 + 4y + 2^2-4` | `= b` |
`(x-3)^2 + (y + 2)^2-13` | `= b` |
`(x-3)^2 + (y + 2)^2` | `= b + 13` |
`:. a=3`
`:. b+13=25\ \ =>\ \ b=12`
`=> B`
The diagram shows the curve with equation `y = x^2-7x + 10`. The curve intersects the `x`-axis at points `A and B`. The point `C` on the curve has the same `y`-coordinate as the `y`-intercept of the curve.
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `y` | `= x^2-7x + 10` |
`= (x-2) (x-5)` |
`:.x = 2 or 5`
`:.\ \ x text(-coordinate of)\ \ A = 2`
`x text(-coordinate of)\ \ B = 5`
ii. `y\ text(intercept occurs when)\ \ x = 0`
`=>y text(-intercept) = 10`
`C\ text(occurs at intercept:)`
`y` | `= x^2-7x + 10` | `\ \ \ \ \ text{… (1)}` |
`y` | `= 10` | `\ \ \ \ \ text{… (2)}` |
`(1) = (2)`
`x^2-7x + 10` | `= 10` |
`x^2-7x` | `= 10` |
`x (x-7)` | `= 10` |
`x = 0 or 7`
`:.\ C\ \ text(is)\ \ (7, 10)`
The parabola `y = −2x^2 + 8x` and the line `y = 2x` intersect at the origin and at the point `A`.
Find the `x`-coordinate of the point `A`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x=3`
Sketch the graph of `y=4/(x-3)`. (3 marks)
--- 0 WORK AREA LINES (style=lined) ---
`text{Vertical asymptote at}\ \ x=3`
`text{As}\ \ x->oo, \ y->0`
`text{Horizontal asymptote at}\ \ y=0`
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1 & \ \ 0\ \ & \ \ 2\ \ & \ \ 4\ \ & \ \ 5\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -1 & -\frac{4}{3} & -4 & 4 & 2\\
\hline
\end{array}
Sketch the graph of `y=2/(3-x)`. (3 marks)
--- 0 WORK AREA LINES (style=lined) ---
`text{Vertical asymptote at}\ \ x=3`
`text{As}\ \ x->oo, \ y->0`
`text{Horizontal asymptote at}\ \ y=0`
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1 & \ \ 0\ \ & \ \ 2\ \ & \ \ 4\ \ & \ \ 5\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & \frac{1}{2} & \frac{2}{3} & 2 & -2 & -1\\
\hline
\end{array}
Sketch the graph of `y=3/(x+1)`. (2 marks)
--- 0 WORK AREA LINES (style=lined) ---
`text{Vertical asymptote at}\ \ x=-1`
`text{As}\ \ x->oo, \ y->0`
`text{Horizontal asymptote at}\ \ y=0`
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -3 & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -\frac{3}{2} & -3 & ∞ & 3 & \frac{3}{2} \\
\hline
\end{array}
Sketch the graph of `y=1/(x-2)`. (2 marks)
--- 0 WORK AREA LINES (style=lined) ---
`text{Vertical asymptote at}\ \ x=2`
`text{As}\ \ x->oo, \ y->0`
`text{Horizontal asymptote at}\ \ y=0`
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ & \ \ 3\ \ & \ \ 4\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -\frac{1}{2} & -1 & ∞ & 1 & \frac{1}{2} \\
\hline
\end{array}
--- 3 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
i. `y=2-1/x`
`text{Vertical asymptote at}\ \ x=0`
`text{As}\ x->oo, \ 1/x -> 0\ \ => 2-1/x -> 2`
`text{Horizontal asymptote at}\ \ y=2`
ii.
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & \frac{5}{2} & 3 & ∞ & 1 & \frac{3}{2} \\
\hline
\end{array}
Sketch the graph of `y=2/x+2`.
Clearly mark all asymptotes. (3 marks)
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 1 & 0 & ∞ & 4 & 3 \\
\hline
\end{array}
Sketch the graph of `y=-2/x`. (2 marks)
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -\frac{3}{2} & -3 & ∞ & 3 & \frac{3}{2} \\
\hline
\end{array}
Factorise the parabola described by the equation `y=-x^2-x+12` and find its vertex. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`y=(3-x)(x+4)`
`text{Vertex}\ = (-1/2,12 1/4)`
`y` | `=-x^2-x+12` | |
`=-(x^2+x-12)` | ||
`=-(x+4)(x-3)` | ||
`=(3-x)(x+4)` |
`text{Solutions at}\ \ x=3, -4`
`text{Line of symmetry at mid-point of solutions.}`
`x=(3+(-4))/2=-1/2`
`text{Substitute}\ \ x=-1/2\ \ text{into}\ \ y=-x^2-x+12`
`y=-1/4+1/2+12=12 1/4`
`:.\ text{Vertex}\ = (-1/2,12 1/4)`
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `y` | `=x^2-8x+15` | |
`=(x-5)(x-3)` |
ii. `text{Solutions at}\ \ x=3,5.`
`text{Line of symmetry at mid-point of solutions.}`
`x=(3+5)/2=4`
`text{Substitute}\ \ x=4\ \ text{into}\ \ y=x^2-8x+15`
`y=4^2-8xx4+15=-1`
`:.\ text{Vertex}\ = (4,-1)`
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `y` | `=2x^2+5x-3` | |
`=(2x-1)(x+3)` |
ii. `text{Solutions at}\ \ x=1/2,-3.`
`text{Line of symmetry at mid-point of solutions.}`
`x=(1/2+(-3))/2=-5/4`
`text{Substitute}\ \ x=-5/4\ \ text{into}\ \ y=2x^2+5x-3`
`y=2xx(-5/4)^2-5xx5/4-3=-49/8`
`:.\ text{Vertex}\ = (-5/4,-49/8)`
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `y` | `=6-x-x^2` | |
`=-(x^2+x-6)` | ||
`=-(x-2)(x+2)` | ||
`=(2-x)(x+3)` |
ii. `text{Solutions at}\ \ x=2,-3.`
`text{Line of symmetry at mid-point of solutions.}`
`x=(2+(-3))/2=-1/2`
`text{Substitute}\ \ x=-1/2\ \ text{into}\ \ y=6-x-x^2`
`y=6+1/2-1/4=6 1/4`
`:.\ text{Vertex}\ = (-1/2,6 1/4)`
By completing the square, find the coordinates of the vertex of the parabola with equation
`y=x^2-3x+1` (3 marks)
`(3/2,-5/4)`
`y` | `=x^2-3x+1` | |
`=x^2-3x+9/4-5/4` | ||
`=(x-3/2)^2-5/4` |
`:.\ text{Vertex}\ = (3/2,-5/4)`
By completing the square, find the coordinates of the vertex of the parabola with equation
`y=x^2+8x+9` (3 marks)
`(-4,-7)`
`y` | `=x^2+8x+9` | |
`=x^2+8x+16-7` | ||
`=(x+4)^2-7` |
`:.\ text{Vertex}\ = (-4,-7)`
By completing the square, find the coordinates of the vertex of the parabola with equation
`y=x^2-6x-4` (3 marks)
`(3,-13)`
`y` | `=x^2-6x-4` | |
`=x^2-6x+9-13` | ||
`=(x-3)^2-13` |
`:.\ text{Vertex}\ = (3,-13)`
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ & \ \ 3\ \ \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & 5 & 2 & \frac{1}{2} & -\frac{1}{4} & -\frac{5}{8}\\
\hline
\end{array}
By completing the table of values, sketch the graph of `y=2^(-x)` (3 marks)
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & & & 1 & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & 4 & 2 & 1 & \frac{1}{2} & \frac{1}{4}\\
\hline
\end{array}
Points `P` and `Q`, shown on the Cartesian plane diagram, are rotated 180° about the origin and become points `P^(′)` and `Q^(′)`.
Plot the points `P^(′)` and `Q^(′)` on the diagram. (3 marks)
--- 0 WORK AREA LINES (style=lined) ---
`P^(′)(2,1)`
`Q^(′)(-4,2)`
Point `Q(3,1)` on the Cartesian plane is rotated 180° about the origin in a clockwise direction to become point `Q^(′)`.
What are the coordinates of `Q^(′)`. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
`Q^(′)(-3,-1)`
Gabby put 5 points on a grid and labelled them `A` to `E`, as shown on the diagram below.
Point `A` is 35 millimetres from point `D.`
Gabby adds a sixth point, `F` so that the arrangement of points has one line of symmetry.
How far is point `F` from point `B?` (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
`42\ text{mm}`
The trapezium `ABCD` is moved to the new position shown by trapezium `SRQP.`
Which of these transformations resulted in the new position?
`C`
`text(Reflection in the)\ xtext(-axis:)`
`ABCD -> A^{prime}B^{prime}C^{prime}D^{prime}`
`text(Translate 8 units left:)`
`A^{prime}B^{prime}C^{prime}D^{prime} -> SRQP`
`=>C`
Rochelle drew a pattern which is pictured below.
Rochelle rotates the pattern.
How much does Rochelle to turn the pattern until it looks exactly the same?
`B`
`text(Outer pattern looks the same every)\ \ 1/8\ \ text(turn).`
`text(Inner cross pattern looks the same every)\ \ 1/4\ \ text(turn).`
`:.\ text(Whole pattern looks the same every)\ \ 1/4\ \ text(turn).`
`=>B`
This shape will be translated 4 units to the right and 2 units up.
Where will the image of the point `A` be located after the shape is translated? (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(1,−3)`
`text(Current position)\ A(−3,−5)`
`text(Translate 4 units to right:)`
`A(−3 + 4,−5) \ -> \ (1,−5)`
`text(Translate 2 units up:)`
`(1,−5+2 ) \ -> \ (1,−3)`
`:. text(Image of)\ A\ text(is)\ (1,−3)`
The point `P(-1, -4)` lies on the Cartesian plane. It is reflected in the `x`-axis to form the point `P^(′)`.
Find the coordinates of `P^(′)`. (1 mark)
`(-1,4)`
`text(Reflections in the)\ xtext{-axis:}`
`ytext{-coordinate has opposite sign and}\ xtext{-coordinate is the same.}`
`P(-1,-4)\ ->\ P^(′)(-1,4)`
The point `P(-3, 7)` lies on the Cartesian plane. It is reflected in the `y`-axis to form the point `P^(′)`.
Find the coordinates of `P^(′)`. (1 mark)
`(7,5)`
`text(Reflections in the)\ ytext{-axis:}`
`xtext{-coordinate has opposite sign and}\ ytext{-coordinate is the same.}`
`P(-3,7)\ ->\ P^(′)(3,7)`
`P(2,3)` is translated 3 units up and 4 units left.
The new point is then reflected in `x`-axis to form point `P^(′)`.
Find the coordinates of `P^(′)`. (2 marks)
`(-2,-6)`
`text{1st transformation:}`
`(2,3)\ ->\ (2-4, 3+3)\ ->\ (-2,6)`
`text{2nd transformation (reflection):}`
`(-2,6)\ ->\ P^(′)(-2,-6)`
`P(-3,-5)` is reflected in the `x`-axis and then translated 3 units to the right to form point `P^(′)`.
Find the coordinates of `P^(′)`. (2 marks)
`(0,5)`
`text{1st transformation (reflection):}`
`P(-3,-5)\ ->\ (-3,5)`
`text{2nd transformation:}`
`(-3,5)\ ->\ (0,5)`
The point `A(-2, 5)` lies on the Cartesian plane. It is translated five units left and then reflected in the `y`-axis.
Find the coordinates of the final image of `A`. (2 marks)
`(7,5)`
`text(1st transformation:)`
`A(-2, 5)\ ->\ (-7,5)`
`text{2nd transformation (reflection):}`
`(-7,5)\ ->\ (7,5)`
The point `P(4, -3)` lies on the Cartesian plane. It is translated four units vertically up and then reflected in the `y`-axis.
Find the coordinates of the final image of `P`. (2 marks)
`(-4,1)`
`text(1st transformation:)`
`P(4,-3)\ ->\ (4,1)`
`text{2nd transformation (reflection):}`
`(4,1)\ ->\ (-4,1)`
An equilateral triangle has vertices `O(0,0)` and `A(8,0)` as shown in the diagram below.
Find `k` if the coordinates of the third vertex are `B(4,k)`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text{Proof (See worked solutions)}`
`ΔOAB\ text{is equilateral}\ \ =>\ \ OA=AB=OB=8`
`text{Let}\ C=(0,4)`
`text{Consider}\ ΔOCB:`
`OB^2` | `=OC^2+CB^2` | |
`64` | `=16+CB^2` | |
`CB^2` | `=48` | |
`CB` | `=sqrt(48)` | |
`=4sqrt(2)` |
`B=(4,4sqrt(2))`
`:.k=4sqrt(2)`