Simplify \(\dfrac{\sqrt{1+\tan ^2 \theta} \sqrt{1-\sin ^2 \theta}}{\sqrt{\operatorname{cosec}^2 \theta-1}}, \operatorname{cosec}^2 \theta \neq 1\)
- \(\tan \theta\)
- \(\cot \theta\)
- \(\sec \theta\)
- \(1\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Simplify \(\dfrac{\sqrt{1+\tan ^2 \theta} \sqrt{1-\sin ^2 \theta}}{\sqrt{\operatorname{cosec}^2 \theta-1}}, \operatorname{cosec}^2 \theta \neq 1\)
\(A\)
\(\dfrac{\sqrt{1+\tan ^2 \theta} \sqrt{1-\sin ^2 \theta}}{\sqrt{\operatorname{cosec}^2 \theta-1}} \) | \(=\dfrac{\sqrt{\sec ^2 \theta} \sqrt{\cos ^2 \theta}}{\sqrt{\cot ^2 \theta}} \) | |
\( =\dfrac{\sec \theta\, \cos \theta}{\cot \theta}\) | ||
\( =\dfrac{1}{\cot \theta}\) | ||
\( =\tan \theta\) |
\(\Rightarrow A\)
Let `cos (x) = 3/5` and `sin^2(y) = 25/169`, where `x ∈ [{3pi}/{2} , 2 pi]` and `y ∈ [{3pi}/{2} , 2 pi]`.
Find the value of `sin(x) + cos(y)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`8/65`
`text{Both angles are in 4th quadrant (given)}`
`cos(x) = 3/5`
`sin(x)` | `= – 4/5\ \ text{(4th quadrant)}` |
`sin^2(y)` | `= 25/169` |
`sin(y)` | `= – 5/13\ \ text{(4th quadrant)}` |
`cos(y) = 12/13`
`:. \ sin(x) + cos(y)` | `= – 4/5 + 12/13` |
`= 8/65` |
If `sintheta = −4/6` and `−pi/2 < theta < pi/2`,
determine the exact value of `costheta` in its simplest form. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`sqrt5/3`
`text(Consider the angle graphically:)`
`text(S)text(ince)\ sintheta\ text(is negative) => underbrace(text(4th quadrant))_(−pi/2 <\ theta\ < pi/2)`
`text(Using Pythagoras:)`
`x^2 = 6^2-4^2`
`x = sqrt20 = 2sqrt5`
`:. costheta= (2sqrt5)/6= sqrt5/3`
If `costheta = −3/4` and `0 < theta < pi`,
determine the exact value of `tantheta`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`tan theta = – sqrt7/3`
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `(sin theta + cos theta) (sin^2 theta – sin theta cos theta + cos^2 theta)`
`=sin^3 theta -sin^2thetacos theta + sin theta cos^2 theta + cos theta sin^2 theta – sin theta cos^2 theta + cos^3 theta`
`=sin^3 theta + cos^3 theta`
ii. `(sin^3 theta + cos^3 theta)/(sin theta + cos theta) – 1`
`= {(sin theta + cos theta) (sin^2 theta – sin theta cos theta + cos^2 theta)}/(sin theta + cos theta) – 1`
`= sin^2 theta + cos^2 theta – sin theta cos theta – 1`
`= 1 – sin theta cos theta – 1`
`= -sin theta cos theta`