SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT1 C1 EQ-Bank 5 MC

Simplify  \(\dfrac{\sqrt{1+\tan ^2 \theta} \sqrt{1-\sin ^2 \theta}}{\sqrt{\operatorname{cosec}^2 \theta-1}}, \operatorname{cosec}^2 \theta \neq 1\)

  1. \(\tan \theta\)
  2. \(\cot \theta\)
  3. \(\sec \theta\)
  4. \(1\)
Show Answers Only

\(A\)

Show Worked Solution
  \(\dfrac{\sqrt{1+\tan ^2 \theta} \sqrt{1-\sin ^2 \theta}}{\sqrt{\operatorname{cosec}^2 \theta-1}} \) \(=\dfrac{\sqrt{\sec ^2 \theta} \sqrt{\cos ^2 \theta}}{\sqrt{\cot ^2 \theta}} \)
    \( =\dfrac{\sec \theta\, \cos \theta}{\cot \theta}\)
    \( =\dfrac{1}{\cot \theta}\)
    \( =\tan \theta\)

 
\(\Rightarrow A\)

Filed Under: T2 Further Trigonometric Identities (Y11) Tagged With: Band 5, smc-1025-30-Other

Trigonometry, EXT1 T2 SM-Bank 8

Let  `cos (x) = 3/5`  and  `sin^2(y) = 25/169`, where  `x ∈ [{3pi}/{2} , 2 pi]`  and  `y ∈ [{3pi}/{2} , 2 pi]`.

Find the value of  `sin(x) + cos(y)`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`8/65`

Show Worked Solution

`text{Both angles are in 4th quadrant (given)}`

`cos(x) = 3/5`
 

`sin(x)` `= – 4/5\ \ text{(4th quadrant)}`
`sin^2(y)` `= 25/169`
`sin(y)` `= – 5/13\ \ text{(4th quadrant)}`

 

`cos(y) = 12/13`
 

`:. \ sin(x) + cos(y)` `= – 4/5 + 12/13`
  `= 8/65`

Filed Under: T2 Further Trigonometric Identities (Y11) Tagged With: Band 5, smc-1025-30-Other

Trigonometry, EXT1 T2 EQ-Bank 5

If  `sintheta = −4/6`  and  `−pi/2 < theta < pi/2`,

determine the exact value of  `costheta`  in its simplest form.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`sqrt5/3`

Show Worked Solution

`text(Consider the angle graphically:)`

COMMENT: Pay careful attention to the range of  `theta`.

`text(S)text(ince)\ sintheta\ text(is negative) => underbrace(text(4th quadrant))_(−pi/2 <\ theta\ < pi/2)`

`text(Using Pythagoras:)`

`x^2 = 6^2-4^2`

`x = sqrt20 = 2sqrt5`

`:. costheta= (2sqrt5)/6= sqrt5/3`

Filed Under: T2 Further Trigonometric Identities (Y11) Tagged With: Band 4, smc-1025-30-Other

Trigonometry, EXT1 T2 SM-Bank 4

If  `costheta = −3/4`  and  `0 < theta < pi`,

determine the exact value of  `tantheta`.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`tan theta = – sqrt7/3`

Show Worked Solution

`text(Consider the angle graphically:)`

 
`text(S)text(ince)\ \ costheta\ \ text(is negative  ⇒  2nd quadrant.)`

`text(Using Pythagoras,)`

`x^2` `= 4^2 – 3^2`
`x` `= sqrt7`

 
`:. tan theta = – sqrt7/3`

Filed Under: T2 Further Trigonometric Identities (Y11) Tagged With: Band 3, smc-1025-30-Other

Trigonometry, EXT1 T2 2006 HSC 1d

  1. Simplify  `(sin theta + cos theta) (sin^2 theta - sin theta cos theta + cos^2 theta)`  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, express  `(sin^3 theta + cos^3 theta)/(sin theta + cos theta) - 1`,  in its simplest form for  `0 < theta < pi/2.`  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `sin^3 theta + cos^3 theta`
  2. `-sin theta cos theta`
Show Worked Solution

i.  `(sin theta + cos theta) (sin^2 theta – sin theta cos theta + cos^2 theta)`

`=sin^3 theta -sin^2thetacos theta + sin theta cos^2 theta + cos theta sin^2 theta – sin theta cos^2 theta + cos^3 theta`

`=sin^3 theta + cos^3 theta`

 

ii.   `(sin^3 theta + cos^3 theta)/(sin theta + cos theta) – 1`

`= {(sin theta + cos theta) (sin^2 theta – sin theta cos theta + cos^2 theta)}/(sin theta + cos theta) – 1`

`= sin^2 theta + cos^2 theta – sin theta cos theta – 1`

`= 1 – sin theta cos theta – 1`

`= -sin theta cos theta`

Filed Under: 1. Basic Arithmetic and Algebra EXT1, 5. Trig Ratios EXT1, T2 Further Trigonometric Identities (Y11) Tagged With: Band 3, smc-1025-30-Other

Copyright © 2014–2025 SmarterEd.com.au · Log in