What is the solution to \(\abs{2 x+3}<5\) ?
- \(-4<x<1\)
- \(x<-4\) or \(x>1\)
- \(-1<x<4\)
- \(x<-1\) or \(x>4\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
What is the solution to \(\abs{2 x+3}<5\) ?
\(A\)
\(\abs{2 x+3}<5\)
\(-5 < 2x+3 <5\)
\(-8< 2x < 2\)
\(-4<x<1\)
\(\Rightarrow A\)
The diagram shows the graph of \(y=\dfrac{1}{\abs{x-5}}\). For what values of \(x\) is \(\dfrac{x}{6} \geq\dfrac{1}{\abs{x-5}}\) ? (3 marks) --- 5 WORK AREA LINES (style=lined) --- \(x \in[2,3] \cup[6, \infty)\) \(\dfrac{x}{6} \geqslant \dfrac{1}{|x-5|}\) \(x|x-5| \geqslant 6\) \(\text{Case 1:}\) \(x(x-5) \geqslant 6\) \(x^2-5 x-6 \geqslant 0\) \((x-6)(x+1) \geqslant 0\) \(x \leqslant-1\ \ \text{or}\ \ x \geqslant 6\) \(\text {By inspection of graph} \ \Rightarrow \ x \leqslant -1\ \text{is not a solution}\) \(\Rightarrow x \geqslant 6\) \(\text {Case 2: }\) \(-x(x-5) \geqslant 6\) \(-x^2+5 x-6 \geqslant 0\) \(x^2-5 x+6 \leqslant 0\) \((x-3)(x-2) \leqslant 0\) \(\Rightarrow 2 \leqslant x \leqslant 3\) \(\therefore x \in[2,3] \cup[6, \infty)\)
Solve the inequality `3 - x > 1/|x - 4|` for `x`, expressing your answer in interval notation. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`x ∈ (– oo, (7 – sqrt 5)/2)`
`3 – x > 1/|x – 4|`
`|x – 4| (3 – x) > 1`
`text(If)\ \ x – 4 > 0, x > 4`
| `(x – 4) (3 – x)` | `> 1` |
| `3x – x^2 – 12 + 4x` | `> 1` |
| `-x^2 + 7x – 13` | `> 0` |
`Delta = 7^2 – 4 ⋅ 1 ⋅ 13 = -3 < 0`
`=>\ text(No Solutions)`
`text(If)\ \ x – 4 < 0, x < 4`
| `-(x – 4) (3 – x)` | `> 1` |
| `x^2 – 7x + 12` | `> 1` |
| `x^2 – 7x + 11` | `> 0` |
| `x` | `= (7 +- sqrt(7^2 – 4 ⋅ 1 ⋅ 11))/2` |
| `= (7 +- sqrt 5)/2` |
`text(Combining solutions)`
`(x < (7 – sqrt 5)/2 ∪ x > (7 + sqrt 5)/2) nn x < 4`
`x ∈ (– oo, (7 – sqrt 5)/2)`
Solve `3/(|\ x - 3\ |) < 3`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < 2\ ∪\ x > 4`
`text(Solution 1)`
`3/(|\ x – 3\ |) < 3`
| `|\ x – 3\ |` | `> 1` |
| `(x^2 – 6x + 9)` | `> 1^2` |
| `x^2 – 6x + 8` | `> 0` |
| `(x – 4)(x – 2)` | `> 0` |
`:. {x: \ x < 2\ ∪\ x > 4}`
`text(Solution 2)`
`|\ x – 3\ | > 1`
| `text(If)\ \ (x – 3)` | `> 0,\ text(i.e.)\ x >3` |
| `x – 3` | `> 1` |
| `x` | `> 4` |
`=> x > 4\ (text(satisfies both))`
| `text(If)\ \ (x – 3)` | `< 0,\ text(i.e.)\ x <3` |
| `−(x – 3)` | `> 1` |
| `−x + 3` | `> 1` |
| `x` | `< 2` |
`=> x < 2\ (text(satisfies both))`
`:. {x: \ x < 2\ ∪\ x > 4}`
Indicate the region on the number plane satisfied by `y ≥ |\ x + 1\ |.` (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(See Worked Solution)`
Find the values of `x` for which `|\ x − 3\ | ≤ 1`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`2 ≤ x ≤ 4`
Find the values of `x` for which `|\ x + 1\ |<= 5`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`-6 <= x <= 4`
--- 8 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
| i. | ![]() |
ii. `text(Solving for)\ \ |\ 2x – 1\ | <= |\ x – 3\ |`
`text(Graph shows the statement is TRUE)`
`text(between the points of intersection.)`
`=>\ text(Intersection occurs when)`
| `(2x – 1)` | `= (x – 3)\ \ \ text(or)\ \ \ ` | `-(2x – 1)` | `= x – 3` |
| `x` | `= -2` | `-2x + 1` | `= x – 3` |
| `-3x` | `= -4` | ||
| `x` | `= 4/3` |
`:.\ text(Solution is)\ \ {x: -2 <= x <= 4/3}`
Which inequality has the same solution as `|\ x + 2\ | + |\ x- 3\ | = 5`?
`C`
`text(In)\ A\ text(and)\ B, \ x ≠ 3\ text(but when)\ x=3,`
`|\ 3 + 2\ | + |\ 3 – 3\ | = 5\ \ text(is correct.)`
`:.\ text(Not)\ \ A\ \ text(or)\ \ B.`
`text(Consider)\ D`
`x -> oo\ text(satisfies)\ |\ 2x – 1\ | >= 5,\ \ text(but)`
`text(obviously not)\ |\ x + 2\ | + |\ x – 3\ | = 5.`
`text(Consider)\ C`
| `x^2 – x – 6` | `<= 0` |
| `(x – 3)(x + 2)` | `<= 0` |
`text(True when)\ \ \ -2 <= x <= 3.`
`text(In this range,)`
`(x + 2) >= 0\ \ text(and)\ \ (x – 3)<= 0`
`:.\ text(We can write)`
| `|\ x + 2\ | + |\ x – 3\ |` | `= (x + 2)\ – (x – 3)` |
| `= x + 2 – x + 3` | |
| `= 5` |
`:. C\ text(has the same solution)`
`=> C\ text(is correct.)`
The diagram shows the graphs `y = |\ x\ |\ - 2` and `y = 4- x^2`.
Write down inequalities that together describe the shaded region. (2 marks)
`text(Inequalities are)`
`y <= 4\ – x^2`
`y >= |\ x\ |\ – 2`
`text(Inequalities are)`
`y <= 4 – x^2`
`y >= |\ x\ |\ – 2`
Solve `|\ 3x -1\ | < 2` (2 marks)
` -1/3 < x < 1 `
`|\ 3x -1\ | < 2`
| `3x -1` | `<2` | `\ \ \ \ \-(3x -1)` | `< 2` |
| `3x` | `<3` | `-3x + 1` | `< 2` |
| `x` | `< 1` | `3x` | `> -1` |
| `x` | `> -1/3` |
`:. -1/3 < x < 1`