Using mathematical induction, prove that the maximum number of diagonals of an `n`-sided plane convex polynomial is `(n(n-3))/2` for `n>=4`. (3 marks)
--- 9 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Using mathematical induction, prove that the maximum number of diagonals of an `n`-sided plane convex polynomial is `(n(n-3))/2` for `n>=4`. (3 marks)
--- 9 WORK AREA LINES (style=lined) ---
`text{See Worked Solutions}`
`text{Let}\ \ D_n=\ text{maximum number of diagonals of}\ n text{-sided polygon}`
`text{Prove true for}\ \ n=4:`
`D_4= 2\ \ text{(quadrilateral only has 2 possible diagonals)}`
`(4(4-3))/2 = 2`
`:.\ text{True for}\ \ n=4.`
`text{Assume true for}\ \ n=k:`
`text{i.e.}\ D_k=(k(k-3))/2`
`text{Prove true for}\ \ n=k+1:`
`text{i.e.}\ D_(k+1)=((k+1)(k+1-3))/2=((k+1)(k-2))/2`
`text{Let}\ ktext{-sided polygon be defined by points}\ P_1,P_2,…,P_k`
`text{Let}\ (k+1)text{-sided polygon be defined by points}\ P_1,P_2,…,P_k,P_(k+1)`
`=>\ text{The extra point adds}\ (k-1)\ text{diagonals}`
`D_(k+1)` | `=D_k+(k-1)` | |
`=(k(k-3))/2+ (k-1)` | ||
`=(k^2-3k+2k-2)/2` | ||
`=(k^2-k-2)/2` | ||
`=((k+1)(k-2))/2` | ||
`=\ text{RHS}` |
`:.\ text{True for}\ \ n=k+1`
`:.\ text{Since true for}\ n=4,\ text{by PMI, true for integers}\ n>=4.`
Using mathematical induction, prove that the sum of the internal angles of an `n`-sided polynomial is `180(n-2)°` for `n>=3`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
`text{See Worked Solutions}`
`text{Let}\ \ S_n=\ text{sum of interior angles of}\ n text{-sided polygon}`
`text{Prove true for}\ \ n=3:`
`S_3= 180°\ \ text{(sum of internal angles of a Δ)}`
`180(3-2) = 180°`
`:.\ text{True for}\ \ n=3.`
`text{Assume true for}\ \ n=k:`
`text{i.e.}\ S_k=(k-2)180°`
`text{Prove true for}\ \ n=k+1:`
`text{i.e.}\ S_(k+1)=(k+1-2)180°=(k-1)180°`
`text{Let}\ ktext{-sided polygon be defined by points}\ P_1,P_2,…,P_k`
`text{Let}\ (k+1)text{-sided polygon be defined by points}\ P_1,P_2,…,P_k,P_(k+1)`
`S_(k+1)` | `=S_k+\ text{angle sum}\ ΔP_1P_kP_(k+1)` | |
`=(k-2)180° + 180°` | ||
`=(k-1)180°` | ||
`=\ text{RHS}` |
`:.\ text{True for}\ \ n=k+1`
`:.\ text{Since true for}\ n=3,\ text{by PMI, true for integers}\ n>=3.`
`n` lines are drawn in a 2-dimensional plane such that no three lines are concurrent and no two lines are parallel.
`S_n` is the number of regions into which these lines divide the plane with the diagram illustrating that `S_3=7`
--- 10 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=lined) ---
i. `S_1=2` `S_2=4`
`S_4=11`
ii. `text{Consider the pattern above:}`
`S_1=2,\ \ S_2=S_1+2`
`S_3=S_2+3,\ …\ , S_n=S_(n-1)+n`
`S_n` | `=S_(n-1)+n` | |
`=S_(n-2)+(n-1)+n` | ||
`=S_(n-3)+(n-2)+(n-1)+n` | ||
`vdots` | ||
`=S_1+(2+3+…+(n-1)+n)` | ||
`=S_0+(1+2+…+(n-1)+n)` | ||
`=1+(1+2+…+(n-1)+n)` |
`=>text{AP where}\ \ a=1, l=n, n=n`
`S_n` | `=1+n/2(1+n)` | |
`=(2+n(n+1))/2` | ||
`=(n^2+n+2)/2` |
iii. `text{Prove}\ \ S_n=(n^2+n+2)/2\ \ text{for}\ \ n>=0`
`text{If}\ \ n=1`
`text{LHS}\ =S_1=2`
`text{RHS}\ = (1^2+1+2)/2=2=\ text{LHS}`
`:.\ text{True for}\ n=1.`
`text{Assume true for}\ \ n=k:`
`text{i.e.}\ S_k=(k^2+k+2)/2`
`text{Prove true for}\ \ n=k+1:`
`text{i.e.}\ S_(k+1)=((k+1)^2+(k+1)+2)/2=(k^2+3k+4)/2`
`text{Consider the line}\ d_4\ text{added below that crosses 3 existing lines}`
`text{and creates 4 new regions.}`
`text{Similarly, the line}\ d_(k+1)\ text{will cross}\ k\ text{existing lines and}`
`text{create}\ (k+1)\ text{new regions.}`
`S_(k+1)` | `=S_k+k+1` | |
`=(k^2+k+2)/2+k+1` | ||
`=(k^2+k+2+2k+2)/2` | ||
`=(k^2+3k+4)/2` | ||
`=\ text{RHS}` |
`:.\ text{True for}\ \ n=k+1`
`:.\ text{Since true for}\ n=1,\ text{by PMI, true for integers}\ n>=1`
Using mathematical induction, prove that the sum of the external angles of an `n`-sided plane convex polygon equals 360° for `n>=3`. (4 marks)
`text{See Worked Solutions}`
`text{Prove true for}\ \ n=3:`
`text{Let}\ \ S_3=\ text{sum of exterior angles for a 3-sided polynomial (triangle)}`
`S_3=angleACF+angleCBE+angleBAD`
`angleACF+angleACB=180°\ \ (angleFCB\ text{is a straight angle})`
`angleCBE+angleCBA=180°\ \ (angleABE\ text{is a straight angle})`
`angleBAD+angleBAC=180°\ \ (angleDAC\ text{is a straight angle})`
`angleACF+angleACB+angleCBE+angleCBA+angleBAD+angleBAC=540°`
`text{Internal angle sum of}\ ΔABC=180°:`
`angleACF+angleCBE+angleBAD+180°` | `=540°` | |
`angleACF+angleCBE+angleBAD` | `=360°` |
`:.\ text{True for}\ \ n=3`
`text{Assume true for}\ \ n=k`
`text{i.e.}\ \ S_k=360°`
`text{Prove true for}\ \ n=k+1:`
`text{i.e.}\ \ S_(k+1)=360°`
`text{Let}\ ktext{-sided polygon be defined by points}\ P_1,P_2,…,P_k`
`text{Let}\ (k+1)text{-sided polygon be defined by points}\ P_1,P_2,…,P_k,P_(k+1)`
`S_k` | `=theta_1+theta_2+ … +theta_(k-1)+theta_k` | |
`=theta_1+theta_2+ … +theta_(k-1)+alpha+beta` |
`S_(k+1)=mu+theta_2+ … +theta_(k-1)+beta+delta`
`theta_1=mu+phi\ \ text{(vertically opposite)}`
`=>\ \ mu=theta_1-phi\ …\ (1)`
`delta=alpha+phi\ …\ (2)\ \ text{(exterior angle of triangle)}`
`text{Substitute (1) and (2) into}\ S_(k+1):`
`S_(k+1)` | `=theta_1-phi+theta_2+ … +theta_(k-1)+beta+alpha+phi` | |
`=theta_1+theta_2+ … +theta_(k-1)+alpha+beta` | ||
`=S_k` |
`:.\ text{True for}\ \ n=k+1`
`:.\ text{Since true for}\ n=3,\ text{true for integers}\ n>=3.`