SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, EXT2 N1 2025 HSC 11c

The complex number \(z\) is given by  \(x+i y\).

Find, in Cartesian form:

  1. \(z^2\)   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. \(\dfrac{1}{z}\).   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(z^2=x^2-y^2+2xy\,i\)

ii.  \(\dfrac{1}{z}=\dfrac{x}{x^2-y^2}-\dfrac{y}{x^2-y^2}\,i\)

Show Worked Solution
i.    \(z^{2}\) \(=(x+iy)^2\)
    \(=x^2-y^2+2xy\,i\)

 

ii.    \(\dfrac{1}{z}\) \(=\dfrac{1}{x+iy}\)
    \(=\dfrac{x-iy}{(x+iy)(x-iy)}\)
    \(=\dfrac{x-iy}{x^2+y^2}\)
    \(=\dfrac{x}{x^2+y^2}-\dfrac{y}{x^2+y^2}\,i\)

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 3, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2024 HSC 12c

Consider the equation  \(\abs{z}=z+8+12 i\), where  \(z=a+b i\)  is a complex number and \(a, b\) are real numbers.

  1. Explain why  \(b=-12\).   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find \(z\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

i.     \(\abs{z}=z+8+12i\)

\(z=a+b i\ \ \Rightarrow\ \ \abs{z}=\sqrt{a^2+b^2}\)

\(\text{Equating moduli:}\)

\(\sqrt{a^2+b^2}=a+b i+8+12 i=a+8+(b+12) i\)

\(\text{Since } \sqrt{a^2+b^2} \in \mathbb{R}:\)

\(b+12=0 \ \Rightarrow \ b=-12\)
 

ii.    \(z=5-12 i\)

Show Worked Solution

i.     \(\abs{z}=z+8+12i\)

\(z=a+b i\ \ \Rightarrow\ \ \abs{z}=\sqrt{a^2+b^2}\)

\(\text{Equating moduli:}\)

\(\sqrt{a^2+b^2}=a+b i+8+12 i=a+8+(b+12) i\)

\(\text{Since } \sqrt{a^2+b^2} \in \mathbb{R}:\)

\(b+12=0 \ \Rightarrow \ b=-12\)
  

ii.    \(\abs{a-12 i}\) \(=a+8\)
  \(\sqrt{a^2+144}\) \(=a+8\)
  \(a^2+144\) \(=a^2+16 a+64\)
  \(16a\) \(=80\)
  \(a\) \(=5\)
 
\(\therefore z=5-12 i\)

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 3, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2024 HSC 11b

Let  \(z=2+3 i\)  and  \(w=1-5 i\).

  1. Find  \(z+\bar{w}\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find  \(z^2\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(z+\bar{w}=3+8 i\)

ii.   \(z^2=-5+12 i\)

Show Worked Solution

i.     \(z=2+3 i\)

\(w=1-5 i \ \Rightarrow \ \bar{w}=1+5 i\)

\(z+\bar{w}=2+3 i+1+5 i=3+8 i\)
 

ii.    \(z^2\) \(=(2+3 i)^{2}\)
    \(=4+12 i+9 i^2\)
    \(=-5+12 i\)

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2022 HSC 11a

Express  `(3-i)/(2+i)`  in the form  `x+iy`, where `x` and `y` are real numbers.  (2 marks)

Show Answers Only

`1-i`

Show Worked Solution
`(3-i)/(2+i)` `=(3-i)/(2+i) xx (2-i)/(2-i)`  
  `=(6-3i-2i+i^2)/(2^2-i^2)`  
  `=(5-5i)/5`  
  `=1-i`  

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2021 HSC 11e

The complex numbers  `z = 5 + i`  and  `w = 2 − 4 i`  are given.

Find  `bar z/{w}`, giving your answer in Cartesian form.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`7/10 + 9/10 i`

Show Worked Solution

`z = 5 + i \ => \ bar z= 5 – i`

`w = 2- 4 i`

`bar z/w` `= {5 – i}/{2 – 4 i} xx {2 + 4 i}/{2 + 4 i}`
  `= {(5 – i)(2 +  4i)}/{4 + 16}`
  `= {10 + 20 i – 2i + 4}/{20}`
  `= 7/10 + 9/10 i`

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 3, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N2 2020 SPEC2 5 MC

Given the complex number  `z = a + bi`, where  `a ∈ R text{\}{0}`  and  `b ∈ R, \ (4zbarz)/((z + barz)^2)` is equivalent to

  1. `1 + ((text(Im)(z))/(text(Re)(z)))^2`
  2. `4[text(Re)(z) xx text(Im)(z)]`
  3. `4([text(Re)(z)]^2 + [text(Im)(z)]^2)`
  4. `(2 xx text(Im)(z))/([text(Re)(z)]^2)`
Show Answers Only

`A`

Show Worked Solution

`z = a + ib, \ barz = a – ib`

`(4zbarz)/((z + barz)^2)` `= (4(a^2 + b^2))/(4a^2)`
  `= 1 + (b/a)^2`
  `= 1 + ((text(Im)(z))/(text(Re)(z)))^2`

`=>A`

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 4, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT1 N1 SM-Bank 5

Let  `z = 1 + 2 i`  and  `w = 3 - i`.

Find, in the form  `x + i y`,

  1.  `zw`   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2.  `overset_((frac{10}{z}))`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `5 + 5 i`
  2. `2+4 i`
Show Worked Solution
i.    `zw` `= (1 + 2 i)(3 – i)`
    `= 3 – i + 6 i – 2 i^2`
    `= 5 + 5 i`

 

ii.    `frac{10}{z}` `= frac{10}{1 + 2 i} xx frac{1-2 i}{1-2 i}`
    `= frac{10-20 i}{1^2 – (2 i)^2`
    `= frac{10-20 i}{1+4}`
    `= 2-4i`

 
`therefore \ overset_(frac{10}{z})= 2+4 i`

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2005 HSC 2a

Let  `z = 3 + i`  and  `w=1-i`.  Find, in the form  `x+iy`,

  1.  `2z+iw`   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2.  `bar z w`   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3.  `6/w`   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  `7+3i`
  2.  `2-4i`
  3.  `3+3i`
Show Worked Solution

i.    `z = 3 + i \ , \ w = 1 – i`

`2z + i w` `=2 (3 + i) + i(1 – i)`
  `= 6 + 2i + i – i^2`
  `= 7 + 3 i`

 

ii.    `overset_z w` `= (3 – i)(1 – i)`
    `= 3 – 3i –  i + i^2`
    `= 2 – 4 i`

 

iii.   `frac{6}{w}` `= frac{6}{1 – i} xx frac{1 + i}{1 + i}`
    `= frac{6 + 6i}{1^2 – i^2}`
    `= frac{6 + 6i}{2}`
    `= 3 + 3i`

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2020 HSC 11a

Consider the complex numbers  `w = -1 + 4i`  and  `z = 2 -i`.

  1. Evaluate  `|w|`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Evaluate  `w overset_ z`.   (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{See Worked Solutions}`
  2. `text{See Worked Solutions}`
Show Worked Solution
i.      `w` ` = -1 + 4 i`
  `|w| ` `= sqrt{(-1)^2 + 4^2} = 17`

 

ii.     `z = 2 – i`

`overset_z = 2 + i`

`w overset_z` `= (-1 + 4i)(2 + i)`
  `= -2 – i +8 i + 4i^2`
  `= -6 + 7i`

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2019 HSC 11a

Let  `z = 1 + 3i`  and  `w = 2 - i`.

  1. Find  `z + bar w`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Express  `z/w`  in the form  `x + iy`, where  `x` and  `y`  are real numbers.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `3 + 4i`
  2. `-1/5 + 7/5 i`
Show Worked Solution

i.   `z = 1 + 3i`

`w = 2 – i \ => \ bar w = 2 + i`

`z + bar w` `= 1 + 3i + 2 + i`
  `= 3 + 4i`

 

ii.    `z/w` `= (1 + 3i)/(2 – i) xx (2 + i)/(2 + i)`
    `= ((1 + 3i)(2 + i))/(2^2 – i^2)`
    `= (2 + i + 6i + 3i^2)/5`
    `= (-1 + 7i)/5`
    `= -1/5 + 7/5 i`

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 1, Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2019 HSC 1 MC

What is the value of  `(3 - 2i)^2`?

  1. `5 - 12i`
  2. `5 + 12i`
  3. `13 - 12i`
  4. `13 + 12i`
Show Answers Only

`A`

Show Worked Solution
`(3 – 2i)^2` `= 9 – 12i + 4i^2`
  `= 9 – 12i – 4`
  `= 5 – 12i`

 
`=>   A`

Filed Under: Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2018 HSC 11a

Let  `z = 2 + 3i`  and  `w = 1 - i.`

  1. Find  `zw`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Express  `barz  - 2/w`  in the form  `x + iy`, where `x` and `y` are real numbers.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `5 + i`
  2. `1 – 4i`
Show Worked Solution

i.   `z = 2 + 3iqquadw = 1 – i`

♦ Mean mark part (i) 97!%.

`zw` `= (2 + 3i)(1 – i)`
  `= 2 – 2i + 3i – 3i^2`
  `= 2 + i + 3`
  `= 5 + i`

 

ii.    `barz – 2/w` `= 2 – 3i – 2/(1 – i)`
    `= 2 – 3i – (2(1 – i))/((1 – i)(1 + i))`
    `= 2 – 3i – (1 + i)`
    `= 1 – 4i`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers Tagged With: Band 1, Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2015 HSC 11a

Express  `(4 + 3i)/(2 - i)`  in the form  `x + iy`, where  `x`  and  `y`  are real.  (2 marks)

Show Answers Only

`1 + 2i`

Show Worked Solution
`(4 + 3i)/(2 – i) ­` `=(4 + 3i)/(2 – i) xx (2 + i)/(2 + i)`
  `=(8 + 4i + 6i – 3)/(4 + 1)`
  `=(5 + 10i)/5`
  `=1 + 2i`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers Tagged With: Band 1, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2012 HSC 1 MC

Let  `z = 5 − i`  and  `w = 2 + 3i`.

What is the value of  `2z + barw`?

  1. `12 + i`
  2. `12 + 2i`
  3. `12 − 4i`
  4. `12 − 5i` 
Show Answers Only

`D`

Show Worked Solution
`2z + barw` `= 2(5 − i) + 2 − 3i`
  `= 10 − 2i + 2 − 3i`
  `= 12 − 5i`

 
`=>D`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers Tagged With: Band 1, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2007 HSC 2a

Let  `z = 4 + i`  and  `w = bar z`. Find, in the form  `x + iy`,

  1.  `w`   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2.  `w - z`   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3.  `z/w`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  `4 – i`
  2.  `-2i`
  3.  `15/17 + 8/17 i`
Show Worked Solution

i.   `z = 4 + i,\ \ w = bar z = 4 – i`
 

ii.   `w – z` `= 4 – i – (4 + i)`
  `= -2i`

 

iii.  `z/w` `=(4 + i)/(4 – i) xx (4+i)/(4+i)`
  `=(4 + i)^2/(16+1)`
  `=(16+8i-1)/17`
  `=15/17 + 8/17 i`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2015 HSC 2 MC

What value of  `z`  satisfies  `z^2 = 7 - 24i?`

  1. `4 - 3i`
  2. `-4 - 3i`
  3. `3 - 4i`
  4. `-3 - 4i`
Show Answers Only

`A`

Show Worked Solution
`(4 – 3i)^2` `= 16 – 24i + 9i^2`
  `= 7 – 24i`

 
`=>  A`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic, smc-1048-25-Square Root

Complex Numbers, EXT2 N1 2006 HSC 2a

Let  `z = 3 + i`  and  `w = 2 - 5i`.  Find, in the form  `x + iy`,

  1.  `z^2.`  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2.  `bar z w.`  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3.  `w/z.`  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  `8 + 6i`
  2.  `1 – 17i`
  3.  `1/10 – 17/10 i`
Show Worked Solution
i.   `z^2` `=(3 + i)^2`
  `= 9 + 6i – 1`
  `= 8 + 6i`

 

ii.  `bar{:z:} w` `=(3 – i) (2 – 5i)`
  `= 6 – 15i – 2i – 5`
  `= 1 – 17i`

 

iii.  `w/z` `=(2 – 5i)/(3 + i) xx (3 – i)/(3 – i)`
  `= (1 – 17i)/10`
  `= 1/10 – 17/10 i`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers Tagged With: Band 2, Band 3, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2009 HSC 2b

Write  `(-2 + 3i)/(2 + i)`  in the form  `a + ib`  where  `a`  and  `b`  are real.   (1 mark)

Show Answers Only

`-1/5 + 8/5 i`

Show Worked Solution

`(-2 + 3i)/(2 + i) xx (2-i)/(2-i)`

`= ((-2 + 3i)(2 – i))/(4 + 1)`

`= (-4 + 2i + 6i + 3)/5`

`= (8i – 1)/5`

`= -1/5 + 8/5 i`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2010 HSC 2a

Let  `z = 5 − i`.

  1. Find  `z^2`  in the form  `x + iy`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find  `z + 2barz`  in the form  `x + iy`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Find  `i/z`  in the form  `x + iy`.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `24 − 10i`
  2. `15 + i`
  3. `-1/26 + 5/26 i`
Show Worked Solution
i. `z` `= 5 − i`
  `:.z^2` `= (5 − i)^2`
    `= 25 − 10i +i\ ^2`
    `= 24 − 10i`

 

ii.    `z + 2bar z` `= 5 − i + 2(5 + i)`
    `= 15 + i`

 

iii.    `i/z` `= i/(5 − i) xx (5+i)/(5+i)`
    `= (i(5 + i))/(25 + 1)`
    `= (5i − 1)/26`
    `= -1/26 + 5/26 i`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2011 HSC 2a

Let  `w = 2 - 3i`  and  `z = 3 + 4i.`

  1.  Find  `bar w + z.`   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2.  Find  `|\ w\ |.`   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3.  Express  `w/z`  in the form  `a + ib`, where  `a`  and  `b`  are real numbers.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `5 + 7i`
  2. `sqrt13`
  3. `-6/25 -17/25 i`
Show Worked Solution

i.   `w = 2 – 3i,\ \ z = 3 + 4i,\ \ bar w = 2 + 3i`

`bar w + z` `= 2 + 3i + 3 + 4i`
  `= 5 + 7i`

 

ii.   `|\ w\ |` `= sqrt (2^2 + 3^2)`
  `= sqrt 13`

 

 iii.   `w/z` `= (2 – 3i)/(3 + 4i) xx (3 – 4i)/(3 – 4i)`
  `= (6 – 8i – 9i – 12)/(9 + 16)`
  `= (-6 – 17i)/25`
  `= -6/25 -17/25 i`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers, Geometry and Complex Numbers (vectors) Tagged With: Band 1, Band 2, smc-1048-10-Basic Arithmetic

Complex Numbers, EXT2 N1 2012 HSC 11a

Express  `(2sqrt5 + i)/(sqrt5 − i)`  in the form  `x + iy`, where `x` and `y` are real.  (2 marks)

Show Answers Only

`3/2 + sqrt5/2 i`

Show Worked Solution
`(2sqrt5 + i)/(sqrt5 − i)` `= ((2sqrt5 + i)(sqrt5 + i))/((sqrt5 − i)(sqrt5 + i))`
  `= (10 + 2sqrt5i + sqrt5i − 1)/(5 + 1)`
  `= (9 + 3sqrt5i)/6`
  `= 3/2 + sqrt5/2 i`

Filed Under: Arithmetic and Complex Numbers, Arithmetic of Complex Numbers Tagged With: Band 2, smc-1048-10-Basic Arithmetic

Copyright © 2014–2025 SmarterEd.com.au · Log in