The complex number \(z\) is given by \(x+i y\).
Find, in Cartesian form:
- \(z^2\) (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
- \(\dfrac{1}{z}\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The complex number \(z\) is given by \(x+i y\).
Find, in Cartesian form:
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. \(z^2=x^2-y^2+2xy\,i\)
ii. \(\dfrac{1}{z}=\dfrac{x}{x^2-y^2}-\dfrac{y}{x^2-y^2}\,i\)
| i. | \(z^{2}\) | \(=(x+iy)^2\) |
| \(=x^2-y^2+2xy\,i\) |
| ii. | \(\dfrac{1}{z}\) | \(=\dfrac{1}{x+iy}\) |
| \(=\dfrac{x-iy}{(x+iy)(x-iy)}\) | ||
| \(=\dfrac{x-iy}{x^2+y^2}\) | ||
| \(=\dfrac{x}{x^2+y^2}-\dfrac{y}{x^2+y^2}\,i\) |
Consider the equation \(\abs{z}=z+8+12 i\), where \(z=a+b i\) is a complex number and \(a, b\) are real numbers.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. \(\abs{z}=z+8+12i\)
\(z=a+b i\ \ \Rightarrow\ \ \abs{z}=\sqrt{a^2+b^2}\)
\(\text{Equating moduli:}\)
\(\sqrt{a^2+b^2}=a+b i+8+12 i=a+8+(b+12) i\)
\(\text{Since } \sqrt{a^2+b^2} \in \mathbb{R}:\)
\(b+12=0 \ \Rightarrow \ b=-12\)
ii. \(z=5-12 i\)
i. \(\abs{z}=z+8+12i\)
\(z=a+b i\ \ \Rightarrow\ \ \abs{z}=\sqrt{a^2+b^2}\)
\(\text{Equating moduli:}\)
\(\sqrt{a^2+b^2}=a+b i+8+12 i=a+8+(b+12) i\)
\(\text{Since } \sqrt{a^2+b^2} \in \mathbb{R}:\)
\(b+12=0 \ \Rightarrow \ b=-12\)
| ii. | \(\abs{a-12 i}\) | \(=a+8\) |
| \(\sqrt{a^2+144}\) | \(=a+8\) | |
| \(a^2+144\) | \(=a^2+16 a+64\) | |
| \(16a\) | \(=80\) | |
| \(a\) | \(=5\) |
Let \(z=2+3 i\) and \(w=1-5 i\). --- 3 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- i. \(z+\bar{w}=3+8 i\) ii. \(z^2=-5+12 i\) i. \(z=2+3 i\) \(w=1-5 i \ \Rightarrow \ \bar{w}=1+5 i\) \(z+\bar{w}=2+3 i+1+5 i=3+8 i\)
ii.
\(z^2\)
\(=(2+3 i)^{2}\)
\(=4+12 i+9 i^2\)
\(=-5+12 i\)
Express `(3-i)/(2+i)` in the form `x+iy`, where `x` and `y` are real numbers. (2 marks)
`1-i`
| `(3-i)/(2+i)` | `=(3-i)/(2+i) xx (2-i)/(2-i)` | |
| `=(6-3i-2i+i^2)/(2^2-i^2)` | ||
| `=(5-5i)/5` | ||
| `=1-i` |
The complex numbers `z = 5 + i` and `w = 2 − 4 i` are given.
Find `bar z/{w}`, giving your answer in Cartesian form. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`7/10 + 9/10 i`
`z = 5 + i \ => \ bar z= 5 – i`
`w = 2- 4 i`
| `bar z/w` | `= {5 – i}/{2 – 4 i} xx {2 + 4 i}/{2 + 4 i}` |
| `= {(5 – i)(2 + 4i)}/{4 + 16}` | |
| `= {10 + 20 i – 2i + 4}/{20}` | |
| `= 7/10 + 9/10 i` |
Given the complex number `z = a + bi`, where `a ∈ R text{\}{0}` and `b ∈ R, \ (4zbarz)/((z + barz)^2)` is equivalent to
`A`
`z = a + ib, \ barz = a – ib`
| `(4zbarz)/((z + barz)^2)` | `= (4(a^2 + b^2))/(4a^2)` |
| `= 1 + (b/a)^2` | |
| `= 1 + ((text(Im)(z))/(text(Re)(z)))^2` |
`=>A`
Let `z = 1 + 2 i` and `w = 3 - i`.
Find, in the form `x + i y`,
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
| i. | `zw` | `= (1 + 2 i)(3 – i)` |
| `= 3 – i + 6 i – 2 i^2` | ||
| `= 5 + 5 i` |
| ii. | `frac{10}{z}` | `= frac{10}{1 + 2 i} xx frac{1-2 i}{1-2 i}` |
| `= frac{10-20 i}{1^2 – (2 i)^2` | ||
| `= frac{10-20 i}{1+4}` | ||
| `= 2-4i` |
`therefore \ overset_(frac{10}{z})= 2+4 i`
Let `z = 3 + i` and `w=1-i`. Find, in the form `x+iy`,
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `z = 3 + i \ , \ w = 1 – i`
| `2z + i w` | `=2 (3 + i) + i(1 – i)` |
| `= 6 + 2i + i – i^2` | |
| `= 7 + 3 i` |
| ii. | `overset_z w` | `= (3 – i)(1 – i)` |
| `= 3 – 3i – i + i^2` | ||
| `= 2 – 4 i` |
| iii. | `frac{6}{w}` | `= frac{6}{1 – i} xx frac{1 + i}{1 + i}` |
| `= frac{6 + 6i}{1^2 – i^2}` | ||
| `= frac{6 + 6i}{2}` | ||
| `= 3 + 3i` |
Consider the complex numbers `w = -1 + 4i` and `z = 2 -i`.
--- 1 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
| i. | `w` | ` = -1 + 4 i` |
| `|w| ` | `= sqrt{(-1)^2 + 4^2} = 17` |
ii. `z = 2 – i`
`overset_z = 2 + i`
| `w overset_z` | `= (-1 + 4i)(2 + i)` |
| `= -2 – i +8 i + 4i^2` | |
| `= -6 + 7i` |
Let `z = 1 + 3i` and `w = 2 - i`.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `z = 1 + 3i`
`w = 2 – i \ => \ bar w = 2 + i`
| `z + bar w` | `= 1 + 3i + 2 + i` |
| `= 3 + 4i` |
| ii. | `z/w` | `= (1 + 3i)/(2 – i) xx (2 + i)/(2 + i)` |
| `= ((1 + 3i)(2 + i))/(2^2 – i^2)` | ||
| `= (2 + i + 6i + 3i^2)/5` | ||
| `= (-1 + 7i)/5` | ||
| `= -1/5 + 7/5 i` |
What is the value of `(3 - 2i)^2`?
`A`
| `(3 – 2i)^2` | `= 9 – 12i + 4i^2` |
| `= 9 – 12i – 4` | |
| `= 5 – 12i` |
`=> A`
Let `z = 2 + 3i` and `w = 1 - i.`
--- 3 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `z = 2 + 3iqquadw = 1 – i`
| `zw` | `= (2 + 3i)(1 – i)` |
| `= 2 – 2i + 3i – 3i^2` | |
| `= 2 + i + 3` | |
| `= 5 + i` |
| ii. | `barz – 2/w` | `= 2 – 3i – 2/(1 – i)` |
| `= 2 – 3i – (2(1 – i))/((1 – i)(1 + i))` | ||
| `= 2 – 3i – (1 + i)` | ||
| `= 1 – 4i` |
Express `(4 + 3i)/(2 - i)` in the form `x + iy`, where `x` and `y` are real. (2 marks)
`1 + 2i`
| `(4 + 3i)/(2 – i) ` | `=(4 + 3i)/(2 – i) xx (2 + i)/(2 + i)` |
| `=(8 + 4i + 6i – 3)/(4 + 1)` | |
| `=(5 + 10i)/5` | |
| `=1 + 2i` |
Let `z = 5 − i` and `w = 2 + 3i`.
What is the value of `2z + barw`?
`D`
| `2z + barw` | `= 2(5 − i) + 2 − 3i` |
| `= 10 − 2i + 2 − 3i` | |
| `= 12 − 5i` |
`=>D`
Let `z = 4 + i` and `w = bar z`. Find, in the form `x + iy`,
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `z = 4 + i,\ \ w = bar z = 4 – i`
| ii. `w – z` | `= 4 – i – (4 + i)` |
| `= -2i` |
| iii. `z/w` | `=(4 + i)/(4 – i) xx (4+i)/(4+i)` |
| `=(4 + i)^2/(16+1)` | |
| `=(16+8i-1)/17` | |
| `=15/17 + 8/17 i` |
What value of `z` satisfies `z^2 = 7 - 24i?`
`A`
| `(4 – 3i)^2` | `= 16 – 24i + 9i^2` |
| `= 7 – 24i` |
`=> A`
Let `z = 3 + i` and `w = 2 - 5i`. Find, in the form `x + iy`,
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
| i. `z^2` | `=(3 + i)^2` |
| `= 9 + 6i – 1` | |
| `= 8 + 6i` |
| ii. `bar{:z:} w` | `=(3 – i) (2 – 5i)` |
| `= 6 – 15i – 2i – 5` | |
| `= 1 – 17i` |
| iii. `w/z` | `=(2 – 5i)/(3 + i) xx (3 – i)/(3 – i)` |
| `= (1 – 17i)/10` | |
| `= 1/10 – 17/10 i` |
Write `(-2 + 3i)/(2 + i)` in the form `a + ib` where `a` and `b` are real. (1 mark)
`-1/5 + 8/5 i`
`(-2 + 3i)/(2 + i) xx (2-i)/(2-i)`
`= ((-2 + 3i)(2 – i))/(4 + 1)`
`= (-4 + 2i + 6i + 3)/5`
`= (8i – 1)/5`
`= -1/5 + 8/5 i`
Let `z = 5 − i`.
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
| i. | `z` | `= 5 − i` |
| `:.z^2` | `= (5 − i)^2` | |
| `= 25 − 10i +i\ ^2` | ||
| `= 24 − 10i` |
| ii. | `z + 2bar z` | `= 5 − i + 2(5 + i)` |
| `= 15 + i` |
| iii. | `i/z` | `= i/(5 − i) xx (5+i)/(5+i)` |
| `= (i(5 + i))/(25 + 1)` | ||
| `= (5i − 1)/26` | ||
| `= -1/26 + 5/26 i` |
Let `w = 2 - 3i` and `z = 3 + 4i.`
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `w = 2 – 3i,\ \ z = 3 + 4i,\ \ bar w = 2 + 3i`
| `bar w + z` | `= 2 + 3i + 3 + 4i` |
| `= 5 + 7i` |
| ii. `|\ w\ |` | `= sqrt (2^2 + 3^2)` |
| `= sqrt 13` |
| iii. `w/z` | `= (2 – 3i)/(3 + 4i) xx (3 – 4i)/(3 – 4i)` |
| `= (6 – 8i – 9i – 12)/(9 + 16)` | |
| `= (-6 – 17i)/25` | |
| `= -6/25 -17/25 i` |
Express `(2sqrt5 + i)/(sqrt5 − i)` in the form `x + iy`, where `x` and `y` are real. (2 marks)
`3/2 + sqrt5/2 i`
| `(2sqrt5 + i)/(sqrt5 − i)` | `= ((2sqrt5 + i)(sqrt5 + i))/((sqrt5 − i)(sqrt5 + i))` |
| `= (10 + 2sqrt5i + sqrt5i − 1)/(5 + 1)` | |
| `= (9 + 3sqrt5i)/6` | |
| `= 3/2 + sqrt5/2 i` |