What are the square roots of \(3-4 i\) ?
- \(1-2 i\) and \(-1+2 i\)
- \(1+2 i\) and \(-1-2 i\)
- \(2-i\) and \(-2+i\)
- \(-2-i\) and \(2+i\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
What are the square roots of \(3-4 i\) ?
\(C\)
\(\text{Let} \ \ z=\sqrt{3-4 i}\) :
\(z^2=3-4 i\)
\(z^2=a^2-b^2+2 a b\,i\)
\(\text{Equate real/imaginary parts:}\)
\(a^2-b^2=3\ \ldots\ (1)\)
\(2 a b=-4 \ \ \Rightarrow \ \ a b=-2\ \ldots\ (2)\)
\(\text{By inspection:}\)
\(a=2, b=-1 \ \Rightarrow \ z_1=2-i\)
\(a=-2, b=1 \ \Rightarrow \ z_2=-2+i\)
\(\Rightarrow C\)
--- 5 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `text{Solution 1}`
`z = x + iy \ , \ z^2 = -i`
`z^2 = x^2 – y^2 + 2x yi = -i`
`x^2 – y^2 = 0 \ …\ (1)`
`2xy = -1 \ …\ (2)`
`x= ± y \ …\ (1)′`
`text{Substitute} \ \ x = y \ \ text{into} \ (2)`
`2x^2 = -1 \ -> \ text{no real solutions}`
`text{Substitute} \ \ x= -y \ \ text{into} \ (2)`
| `-2x^2` | `= -1` | |
| `x` | `= ± 1/sqrt2` |
`:. \ z = 1/sqrt2 – 1/sqrt2 i \ \ text{or} \ \ z = – 1/sqrt2+ 1/sqrt2 i`
`text{Solution 2}`
`z = re^{i theta} \ , \ z^2 = -i`
`r^2 e^{i2 theta} = e^{i {3pi}/{2}} \ \ text{or} \ \ e^{-i pi/2}`
`=> \ r = 1 \ , \ theta = {3pi}/{4} \ \ text{or} \ \ – pi/4`
`z= text{cos} {3pi}/{4} + i \ text{sin} {3pi}/{4} = – 1/sqrt2 + 1/sqrt2 i`
`z= text{cos} (- pi/4) + i \ text{sin} (- pi/4) = 1/sqrt2 – 1/sqrt2 i`
ii. `z^2 + 2z + 1 + i = 0`
| `z` | `= {2 ± sqrt{4 – 4 * 1 * (1 + i)}}/{2}` | |
| `= {-2 ± sqrt{4 – 4 – 4 \ i}}/{2}` | ||
| `= -1 ± sqrt(-i)` |
`:. \ z = -1 + 1/sqrt2 – 1/sqrt2 i \ \ text{or} \ \ z = -1 – 1/sqrt2 + 1/sqrt2 i`
Find the values of `z`, in the form `z = x + iy`, such that
`z = sqrt(-15 + 8i)` (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`z= 1 + 4i\ \ text(or)\ \ z= -1 -4i`
| `z` | `= sqrt(-15 + 8i)` |
| `z^2` | `= -15 + 8i` |
| `-15 + 8i` | `= (x + iy)^2` |
| `= x^2-y^2 + 2xyi` |
| `x^2-y^2` | `= -15\ …\ (1)` |
| `2xy` | `= 8` |
| `xy` | `= 4\ …\ (2)` |
`x=1,\ \ y=4`
`x=-1,\ \ y=-4`
| `:. z_1` | `= 1 + 4i` |
| `z_2` | `= -1-4i` |
Find the values of `z`, in the form `z = a + ib`, such that
`z = sqrt(7 + 24i)` (2 marks)
`z = 4 + 3i\ \ text(or)\ \ z=-4-3i`
| `z` | `= sqrt(7 + 24i)` |
| `z^2` | `= 7 + 24i` |
| `7 + 24i` | `= (a + ib)^2` |
| `= a^2 – b^2 + 2abi` |
| `a^2 – b^2` | `= 7\ …\ (1)` |
| `2ab` | `= 24` |
| `ab` | `= 12\ …\ (2)` |
`a=4,\ \ b=3`
`a=-4,\ \ b=-3`
| `:. z_1` | `= 4 + 3i` |
| `z_2` | `= −4 – 3i` |
What value of `z` satisfies `z^2 = 7 - 24i?`
`A`
| `(4 – 3i)^2` | `= 16 – 24i + 9i^2` |
| `= 7 – 24i` |
`=> A`