The complex number \(z\) lies on the unit circle.
What is the range of \(\operatorname{Arg}(z-2 i)\) ?
- \(\dfrac{\pi}{6} \leq \operatorname{Arg}(z-2 i) \leq \dfrac{5 \pi}{6}\)
- \(\dfrac{\pi}{3} \leq \operatorname{Arg}(z-2 i) \leq \dfrac{2 \pi}{3}\)
- \(-\dfrac{5 \pi}{6} \leq \operatorname{Arg}(z-2 i) \leq-\dfrac{\pi}{6}\)
- \(-\dfrac{2 \pi}{3} \leq \operatorname{Arg}(z-2 i) \leq-\dfrac{\pi}{3}\)









