Consider the equation `p(z)=z^2 + 6iz-25`, `z ∈ C`.
- Express `p(z)` in the form `p(z) = (z+ai)^2 + b` where `a`, ` b ∈ R`. (1 mark)
- Hence, or otherwise, find the solutions of the equation `p(z) = 0`. (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Consider the equation `p(z)=z^2 + 6iz-25`, `z ∈ C`.
a. | `p(z)` | `= (z + 3i)^2-(3i)^2-25` |
`=(z + 3i)^2 +9-25` | ||
`=(z + 3i)^2-16` |
b. |
`(z + 3i)^2` | `= 16` |
`z + 3i` | `= ± 4` | |
`z ` | `= ± 4-3i` |
Solve the quadratic equation
\(z^2-3 z+4=0\)
where \(z\) is a complex number. Give your answers in Cartesian form. (2 marks)
\(\dfrac{3+\sqrt{7}i}{2}\ \ \text{or}\ \ \dfrac{3- \sqrt{7}i}{2} \)
\(z^2-3 z+4=0\)
\(z\) | \(=\dfrac{3 \pm \sqrt{(-3)^2-4 \times 1 \times 4}}{2} \) | |
\(=\dfrac{3 \pm \sqrt{-7}}{2} \) | ||
\(=\dfrac{3+\sqrt{7}i}{2}\ \ \text{or}\ \ \dfrac{3- \sqrt{7}i}{2} \) |
Consider the equation `z^5+1=0`, where `z` is a complex number.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 7 WORK AREA LINES (style=lined) ---
i. `z^5+1=0\ \ =>\ \ z^5=-1`
`z=e^(i((2k+1)/5)),\ \ kin{0,1,-1,2,-2}`
`:.z=e^(i(pi)/5), e^(i(3pi)/5), e^(-i(pi)/5), -1, e^(-i(3pi)/5)`
ii. `z^5+1=(z+1)(z^4-z^3+z^2-z+1)`
`text{Given}\ \ z!=-1,`
`z^4-z^3+z^2-z+1=0`
`text{Divide by}\ z^2\ \ (z!=0)`
`z^2-z+1-1/z+1/z^2` | `=0` | |
`z^2+1/z^2-(z+1/z)+1` | `=0` | |
`z^2+2+1/z^2-(z+1/z)-1` | `=0` | |
`(z+1/z)^2-(z-1/z)-1` | `=0` |
`text{Let}\ \ u=z+1/z:`
`:.u^2-u-1=0`
iii. `u^2-u-1=0`
`text{By quadratic formula:}`
`u` | `=(1+-sqrt(1-4xx1xx(-1)))/(2)` | |
`=(1+-sqrt5)/2` |
`z+1/z` | `=(1+-sqrt5)/2` | |
`e^(i(3pi)/5)+e^(-i(3pi)/5)` | `=(1-sqrt5)/2,\ \ (cos\ (3pi)/5 <0)` | |
`2cos((3pi)/5)` | `=(1-sqrt5)/2` | |
`cos((3pi)/5)` | `=(1-sqrt5)/4` |
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
a. | `z^2 + 2z + 2` | `= 0` |
`z^2 + 2z + 1 + 1` | `= 0` | |
`(z + 1)^2 + 1` | `= 0` | |
`(z + 1)^2 – i^2` | `= 0` | |
`(z + 1 + i)(z + 1 – i)` | `= 0` |
`:. z = -1 – i\ \ \ text(or)\ \ -1 + i`
b. `z = x + yi \ => \ barz = x – yi`
`z^2 + 2barz + 2` | `= 0` |
`(x + yi)^2 + 2(x – yi) + 2` | `= 0` |
`x^2 + 2xyi – y^2 + 2x – 2yi + 2` | `= 0` |
`x^2 – y^2 + 2x + 2 + (2xy – 2y)i` | `= 0` |
`text(Find)\ \ x, y\ text(such that)`
`x^2 – y^2 + 2x + 2` | `= 0\ …\ (1)` |
`2xy – 2y` | `= 0\ …\ (2)` |
`text(When)\ \ 2xy – 2y = 0`
`2y(x – 1)` | `= 0` |
`x` | `= 1` |
`text(Substitute)\ \ x = 1\ \ text{into (1)}`
`1 – y^2 + 2 + 2` | `= 0` |
`y^2` | `= 5` |
`y` | `= ±sqrt5` |
`:. z = 1 ± sqrt5 i`
--- 5 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `text{Solution 1}`
`z = x + iy \ , \ z^2 = -i`
`z^2 = x^2 – y^2 + 2x yi = -i`
`x^2 – y^2 = 0 \ …\ (1)`
`2xy = -1 \ …\ (2)`
`x= ± y \ …\ (1)′`
`text{Substitute} \ \ x = y \ \ text{into} \ (2)`
`2x^2 = -1 \ -> \ text{no real solutions}`
`text{Substitute} \ \ x= -y \ \ text{into} \ (2)`
`-2x^2` | `= -1` | |
`x` | `= ± 1/sqrt2` |
`:. \ z = 1/sqrt2 – 1/sqrt2 i \ \ text{or} \ \ z = – 1/sqrt2+ 1/sqrt2 i`
`text{Solution 2}`
`z = re^{i theta} \ , \ z^2 = -i`
`r^2 e^{i2 theta} = e^{i {3pi}/{2}} \ \ text{or} \ \ e^{-i pi/2}`
`=> \ r = 1 \ , \ theta = {3pi}/{4} \ \ text{or} \ \ – pi/4`
`z= text{cos} {3pi}/{4} + i \ text{sin} {3pi}/{4} = – 1/sqrt2 + 1/sqrt2 i`
`z= text{cos} (- pi/4) + i \ text{sin} (- pi/4) = 1/sqrt2 – 1/sqrt2 i`
ii. `z^2 + 2z + 1 + i = 0`
`z` | `= {2 ± sqrt{4 – 4 * 1 * (1 + i)}}/{2}` | |
`= {-2 ± sqrt{4 – 4 – 4 \ i}}/{2}` | ||
`= -1 ± sqrt(-i)` |
`:. \ z = -1 + 1/sqrt2 – 1/sqrt2 i \ \ text{or} \ \ z = -1 – 1/sqrt2 + 1/sqrt2 i`
Solve `z^2 + 3 z + (3-i) = 0`, giving your answer(s) in the form `a + bi`, where `a` and `b` are real. (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
`z= -1 + i \ \ text{or} \ \ -2-i`
`z^2 + 3z + (3-i) = 0`
`z` | `= frac{-3 ± sqrt(9-4 · 1 (3-i))}{2}` |
`= frac{-3 ± sqrt(4i-3)}{2} ` |
`text{Consider} \ \ Delta = sqrt(4i-3) :`
`x + i y` | `= sqrt(4i-3)` |
`(x + iy)^2` | `= 4i-3` |
`x^2-y^2 + 2xyi` | `= 4i-3` |
`text{Equating real and imaginary parts:}`
`2 xy` | `= 4` |
`xy` | `= 2\ …\ (1)` |
`x^2-y^2` | `= -3\ …\ (2)` |
`=> x = 1 \ , \ y =2`
`=> \ x + iy = 1 + 2 i`
`therefore z` | `= frac{-3 ± (1 + 2i)}{2}` |
`z ` | `= -1 + i \ \ text{or} \ \ -2-i` |
Given that `z = 3 + i` is a root of `z^2 + pz + q = 0`, where `p` and `q` are real, what are the values of `p` and `q`?
`B`
`text{S}text{ince} \ \ z_1 = 3 + i \ \ text{is a root}`
`=> \ z_2 = 3 – i \ \ text{is a root}`
`z_1 + z_2` | `= frac{-b}{a}` |
`(3 + i) + (3 – i)` | `= -p` |
`therefore \ p` | `= -6` |
`z_1 z_2` | `= frac{c}{a}` |
`(3 + i) (3 – i)` | `= q` |
`3^2 – i^2` | `= q` |
`therefore \ q` | `= 10` |
`=> \ B`
--- 7 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. | `z` | `= sqrt(−3 – 4i)` |
`z^2` | `= −3 – 4i` |
`−3 – 4i` | `= (x + iy)^2` |
`= x^2 – y^2 + 2xyi` | |
`x^2 – y^2` | `= −3\ …\ \ (1)` |
`2xy` | `= −4` |
`xy` | `= −2\ …\ \ (2)` |
`x=-1,\ \ y=2`
`x=1,\ \ y=-2`
`:. z_1` | `= −1 + 2i` |
`z_2` | `= 1 – 2i` |
ii. `z^2 – 7z + 13 + i = 0`
`text(Using general formula:)`
`z` | `= (−b ± sqrt(b^2 – 4ac))/(2a)` |
`= (7 ± sqrt(49 – 4 · 1(13 + i)))/2` | |
`= (7 ± sqrt(−3 – 4i))/2` |
`text(Using)\ \ z_1 = −1 + 2i,`
`z = (7 + (−1 + 2i))/2 = 3+i`
`text(Using)\ \ z_2 = 1 – 2i,`
`z = (7 + (1 – 2i))/2 = 4 – i`
`:. z = 3 + i\ \ text(or)\ \ z=4 – i`
Solve the quadratic equation `z^2 + (2 + 3i)z + (1 + 3i) = 0`, giving your answers in the form `a + bi`, where `a` and `b` are real numbers. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`-1 or -1 – 3i`
`z^2 + (2 + 3i)z + (1 + 3i) = 0`
`z` |
`= (-(2 + 3i) +- sqrt((2 + 3i)^2 – 4 · 1(1 + 3i)))/2` |
`= (-(2 + 3i) +- sqrt (4 + 12i + 9i^2 – 4 – 12i))/2` | |
`= (-(2 + 3i) +- sqrt(-9))/2` | |
`= ((-2 – 3i) +- 3i)/2` | |
`:. z` | `= (-2)/2 or (-2 – 6i)/2` |
`= -1 or -1 – 3i` |
Suppose that `x + 1/x = -1.`
What is the value of `x^2016 + 1/x^2016?`
`=> B`
`x + 1/x = −1`
`x^2 + x + 1 = 0`
`:. x` | `= (−1 ± sqrt(1 – 4))/2` |
`= −1/2 ± sqrt3/2 i` |
`|\ x\ | = sqrt((−1/2)^2 + (sqrt3/2)^2) = 1`
`:. x` | `= cos\ (2pi)/3 + isin\ (2pi)/3` |
`= text(cis)(2pi)/3` |
`text(or)`
`x` | `= cos\ (2pi)/3 – isin\ (2pi)/3` |
`= text(cis)(−(2pi)/3)` |
`x^2016` | `= text(cis)(±1344pi)quad(text(De Moivre))` |
`= text(cis)0` | |
`= 1` |
`:. x^2016 + 1/(x^2016) = 2`
`=> B`
The points `P,Q` and `R` on the Argand diagram represent the complex numbers `z_1, z_2` and `a` respectively.
The triangles `OPR` and `OQR` are equilateral with unit sides, so `|\ z_1\ | = |\ z_2\ | = |\ a\ | = 1.`
Let `omega = cos pi/3 + i sin pi/3.`
--- 3 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(S) text(ince)\ \ Delta ORQ\ \ text(is equilateral, each angle is)\ \ pi/3\ \ text(radians.)`
`text(From)\ \ R(a):`
`Q(z_2)\ \ text(is an anticlockwise rotation through)\ \ pi/3.`
`:. z_2 = a(cos\ pi/3+i sin\ pi/3)=omega a.`
ii. `text(Solution 1)`
`text(Similarly,)\ \ a` | `=z_1 omega` |
`z_1` | `=a/omega` |
`:z_1z_2` | `=a/omega xx omega a` |
`=a^2` |
`text(Solution 2)`
`P(z_1)\ \ text(is a clockwise rotation of)\ \ R(a)\ \ text(through)\ \ pi/3.`
`:.z_1` | `= bar omega a.` |
`:. z_1 z_2` | `= bar omega a xx omega a` |
`=a^2(cos pi/3 – i sin pi/3) xx (cos pi/3 + i sin pi/3)` | |
`=a^2(cos^2 pi/3 + sin^2 pi/3)` | |
`= a^2` |
iii. `z^2-az + a^2 = 0`
`text(Let the roots be)\ \ alpha and beta.`
`alpha + beta` | `=-b/a=a` |
`alpha beta` | `=c/a=a^2` |
`z_1 z_2` | `= a^2\ \ \ \ \ text{(part (ii))}` |
`z_1 + z_2` | `=bar omega a + omega a` |
`=(cos pi/3 + i sin pi/3 + cos pi/3-i sin pi/3) a` | |
`=2 cos pi/3 xx a` | |
`=2 xx 1/2 xx a` | |
`=a` |
`:.\ z_1 and z_2\ \ text(are the roots of)\ \ z^2-az + a^2 = 0.`
--- 6 WORK AREA LINES (style=lined) ---
`z^2 + iz - 1 - i = 0.` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
i. | `z` | `=sqrt(3+4i)` |
`z^2` | `=3+4i` | |
`(x + iy)^2` | `= 3 + 4i` | |
`x^2 – y^2+ 2xyi` | `= 3 + 4i` | |
`=>x^2 – y^2 = 3,\ \ \ xy = 2` |
`text(By inspection,)`
`text(If)\ \ x=2,\ \ \ y=1`
`text(If)\ \ x=-2,\ \ \ y=-1`
`:.z= 2 + i,\ \ text(or)\ \ -(2+i)`
ii. `z^2 + iz – 1 – i = 0`
`:.z =` | `(-i +- sqrt (-1 + 4 (1 + i)))/2` |
`=` | `\ \ (-i +- sqrt(3 + 4i))/2` |
`=` | `\ \ (-i +- (2+i))/2` |
`=` | `\ \ 1\ \ \ text(or)\ \ \ -1-i` |
Factorise `z^2 + 4iz + 5.` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(z – i) (z + 5i)`
`text(Solution 1)`
`alpha + beta = 4i,\ \ \ alpha beta = 5 = -5i^2`
`:. z^2 + 4iz + 5 = (z – i) (z + 5i)`
`(alpha + beta = 4i,\ \ \ alpha beta = 5 = -5i^2)`
`text(Solution 2)`
`z` | `=(-b+- sqrt(b^2 – 4ac))/(2a)` |
`=(-4i +- sqrt((4i)^2-4 xx 5))/2` | |
`=(-4i+-sqrt(-16-20))/2` | |
`=(-4i +- 6i)/2` | |
`=i\ \ text(or)\ \ -5i` |
`:.z^2 + 4iz + 5 = (z – i) (z + 5i)`