SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, EXT2 N2 2019 HSC 16b

Let  `P(z) = z^4 - 2kz^3 + 2k^2z^2 + mz + 1`, where  `k`  and  `m`  are real numbers.

The roots of  `P(z)`  are  `alpha, bar alpha, beta, bar beta`.

It is given that  `|\ alpha\ | = 1`  and  `|\ beta\ | = 1`.

  1. Show that  `(text{Re} (alpha))^2 + (text{Re} (beta))^2 = 1`.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. The diagram shows the position of  `alpha`.
     


 

On the diagram, accurately show all possible positions of  `beta`.  (2 marks)

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ text{(See Worked Solutions)}`
  2. `text(See Worked Solutions)`
Show Worked Solution

i.    `P(z) = z^4 – 2kz^3 + 2k^2z^2 + mz + 1,\ \ k, m in RR`

`text(Roots):\ \ alpha, bar alpha, beta, bar beta and |\ alpha\ | = 1, |\ beta\ | = 1`

`text(Show)\ \ (text{Re} (alpha))^2 + (text{Re} (beta))^2 = 1`

♦♦ Mean mark part (i) 26%.

`alpha + bar alpha + beta + bar beta` `= 2k`
`2 text{Re} (alpha) + 2 text{Re} (beta)` `= 2k`
`text{Re} (alpha) + text{Re} (beta)` `= k`

 

`alpha bar alpha + alpha beta + alpha bar beta + bar alpha beta + bar alpha bar beta + beta bar beta` `= 2k^2`
`|\ alpha\ |^2 + alpha(beta + bar beta) + bar alpha(beta + bar beta) + |\ beta\ |^2` `= 2k^2`
`1 + (alpha + bar alpha)(beta + bar beta) + 1` `= 2k^2`
`2 + 2 text{Re} (alpha) ⋅ 2 text{Re} (beta)` `= 2 (text{Re} (alpha) + text{Re} (beta))^2`
`2 + 4 text{Re} (alpha) text{Re} (beta)` `= 2 text{Re} (alpha)^2 + 4 text{Re} (alpha) text{Re} (beta) + 2 text{Re} (beta)^2`
`2` `= 2(text{Re} (alpha)^2 + text{Re} (beta)^2)`
`:. 1` `= text{Re} (alpha)^2 + text{Re} (beta)^2`

 

ii.    `|\ alpha\ | = |\ beta\ |\ \ \ text{(given)}`
  `text{Re}(alpha)^2 + text{Re}(beta)^2 = 1\ \ \ text{(see part (i))}`
  `text{Re}(alpha)^2 + text{Im}(alpha)^2 = 1\ \ \ (|\ alpha\ | = 1)`
  `=> text{Re}(beta)^2 = text{Im} (alpha)^2`
  `\ \ \ \ \ \ text{Re}(beta) = +-text{Im}(alpha)`

 

♦♦♦ Mean mark part (ii) 10%.

Filed Under: Geometrical Implications of Complex Numbers, Solving Equations with Complex Numbers Tagged With: Band 5, Band 6, smc-1050-35-Conjugate roots, smc-1052-50-Sketch roots

Complex Numbers, EXT2 N2 2017 HSC 1 MC

The complex number `z` is chosen so that  `1, z, …, z^7`  form the vertices of the regular polygon shown.

Which polynomial equation has all of these complex numbers as roots?

  1. `x^7 - 1 = 0`
  2. `x^7 + 1 = 0`
  3. `x^8 - 1 = 0`
  4. `x^8 + 1 = 0`
Show Answers Only

`C`

Show Worked Solution

`P(x)\ \ text(has 8 separate roots.)`

`:.\ text(Must be of degree at least 8.)`

`text(S) text(ince 1 is also a root,)`

`=>  C`

Filed Under: Geometrical Implications of Complex Numbers, Geometry and Complex Numbers (vectors), Solving Equations with Complex Numbers Tagged With: Band 3, smc-1050-30-Roots > 3, smc-1052-50-Sketch roots

Copyright © 2014–2025 SmarterEd.com.au · Log in