Let \(\displaystyle I_n=\large{\int}_{\small{\dfrac{\pi}{4}}}^{\small{\dfrac{\pi}{2}}}\)\(\cot ^{2 n} \theta \, d \theta\) for integers \(n \geq 0\).
- Show that \(I_n=\dfrac{1}{2 n-1}-I_{n-1}\) for \(n>0\), given that \(\dfrac{d}{d \theta} \cot \theta=-\operatorname{cosec}^2 \theta\). (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
- Hence, or otherwise, calculate \(I_2\). (1 mark)
--- 5 WORK AREA LINES (style=lined) ---