Find \(\displaystyle \int \frac{x^2-2 x+9}{(4-x)\left(x^2+1\right)} \, dx\). (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find \(\displaystyle \int \frac{x^2-2 x+9}{(4-x)\left(x^2+1\right)} \, dx\). (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(2\, \tan ^{-1} x-\ln \abs{4-x}+C\)
\(\dfrac{x^2-2 x+9}{(4-x)\left(x^2+1\right)}=\dfrac{A}{(4-x)}+\dfrac{B x+C}{x^2+1}\)
\(A\left(x^2+1\right)+(B x+C)(4-x)=x^2-2 x+9\)
\(\text{If}\ \ x=4:\)
\(17 A=16-8+9=17 \ \ \Rightarrow\ \ A=1\)
\(\text{If}\ \ x=0:\)
\(1+c \times 4=9 \ \ \Rightarrow\ \ C=2\)
\(\text{If}\ \ x=1:\)
\(2+3 B+6=8 \ \ \Rightarrow\ \ B=0\)
| \(\displaystyle\int \frac{x^2-2 x+9}{(4-x)\left(x^2+1\right)}\, d x\) | \(=\displaystyle\int \frac{1}{4-x}\, d x+\int \frac{2}{x^2+1}\, d x\) |
| \(=2\, \tan ^{-1} x-\ln \abs{4-x}+C\) |
Use partial fractions to find \(\displaystyle \int \frac{3 x^2+2 x+1}{(x-1)\left(x^2+1\right)}\, d x\) (3 marks) --- 8 WORK AREA LINES (style=lined) --- \(I=3 \ln \abs{x-1}+2 \tan ^{-1}(x)+c\) \(\displaystyle\int \dfrac{3 x^2+2 x+1}{(x-1)\left(x^2+1\right)}\, d x\) \(\dfrac{3 x^2+2 x+1}{(x-1)\left(x^2+1\right)}=\dfrac{A}{(x-1)}+\dfrac{B x+C}{x^2+1}\) \(3+2+1=2 A \ \Rightarrow \ A=3\) \(A+B=3 \quad \quad \ \Rightarrow \ B=0\) \(A-C=1 \quad \quad \ \Rightarrow \ C=2\)
\(3 x^2+2 x+1\)
\(=A\left(x^2+1\right)+(x-1)(B x+C)\)
\(=A x^2+A+B x^2+C x-B x-C\)
\(=(A+B) x^2+(C-B) x+A-C\)
\(\text {If } x=1:\)
\(\therefore I\)
\(=\displaystyle \int \frac{3}{x-1}+\frac{2}{x^2+1}\, d x\)
\(=3 \ln \abs{x-1}+2 \tan ^{-1}(x)+c\)
Find `int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx`. (4 marks)
--- 9 WORK AREA LINES (style=lined) ---
`3ln |x|+2tan^(-1)((x)/(2))+c`
`text{Using partial fractions:}`
| `(3x^(2)+4x+12)/(x(x^(2)+4))` | `-=(A)/(x)+(Bx+C)/(x^(2)+4)` | |
| `3x^(2)+4x+12` | `=A(x^(2)+4)+x(Bx+C)` | |
| `3x^(2)+4x+12` | `=(A+B)x^(2)+Cx+4A` |
`4A=12\ \ =>\ \ A=3`
`C=4`
`A+B=3\ \ =>\ \ B=0`
| `:.\int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx` | `=int(3)/(x)+(4)/(4+x^(2))\ dx` | |
| `=3ln |x|+2tan^(-1)((x)/(2))+c` |
Using partial fractions, evaluate `int_(2)^(n)(4+x)/((1-x)(4+x^(2))) dx`, giving your answer in the form `(1)/(2)ln((f(n))/(8(n-1)^(2)))`, where `f(n)` is a function of `n`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`1/2ln((4+n^2)/(8(1-n^2)))`
| `(4+x)/((1-x)(4+x^(2)))` | `≡ A/(1-x) + (Bx+C)/(4+x^2)` | |
| `4+x` | `≡A(4+x^2)+(Bx+C)(1-x)` |
`text{If}\ \ x=1, \ 5=5A\ \ =>\ \ A=1`
| `(4+x)` | `≡ 4+x^2+Bx-Bx^2+C-Cx` | |
| `4+x` | `≡ (1-B)x^2+(B-C)x+C+4` |
`=>\ B=1, \ C=0`
`:.int_(2)^(n)(4+x)/((1-x)(4+x^(2))) dx`
`=int_2^n 1/(1-x) +x/(4+x^2)\ dx`
`=[-ln abs(1-x)+1/2ln(4+x^2)]_2^n`
`=-ln abs(1-n)+1/2ln(4+n^2)+lnabs(1-2)-1/2ln(4+2^2)`
`=-1/2ln(1-n)^2+1/2ln(4+n^2)-1/2ln(8)`
`=1/2ln((4+n^2)/(8(1-n^2)))`
Express `{3x^2-5}/{(x-2)(x^2 + x + 1)}` as a sum of partial fractions over `RR`. (3 marks)
`{3x^2-5}/{(x-2)(x^2 + x + 1)} = {1}/{x-2} + {2x + 3}/{x^2 + x + 1}`
`{3x^2-5}/{(x-2)(x^2 + x + 1)} = {A}/{(x-2)} + {B x + C}/{(x^2 + x + 1)}`
`A (x^2 + x + 1) + (Bx + C)(x-2) ≡ 3x^2-5`
`text{If} \ \ x = 2,`
`7A = 7 \ => \ A = 1`
`text{If} \ \ x = 0,`
`1-2C=-5 \ => \ C = 3`
`text(Equating coefficients:)`
`x^2 + x + 1 + Bx^2-2Bx + 3x -6 \ ≡ \ 3x^2 -5`
`(B + 1) x^2 + (4 -2B) x -5 \ ≡ \ 3x^2-5`
`=> B = 2`
`:. \ {3x^2-5}/{(x-2)(x^2 + x + 1)} = {1}/{x-2} + {2x + 3}/{x^2 + x + 1}`
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `(5x^2-3x+13)/((x-1)(x^2+4)) ≡ (a(x^2+4) + (bx-1)(x-1))/((x-1)(x^2+4))`
`text(Equating numerators:)`
| `5x^2-3x+13` | `=ax^2+4a+bx^2-bx-x+1` | |
| `=(a+b)x^2+(-b-1)x+4a+1` |
| `-b-1` | `=-3\ \ =>\ \ b=2` | |
| `a` | `=3` |
| ii. | `int (5x^2-3x+13)/((x-1)(x^2+4)) \ dx` | `=int 3/(x-1)\ dx-int (2x)/(x^2+4)\ dx-int 1/(4+x^2)\ dx` |
| `=3 log_e|x-1|-log_e |x^2+4|-1/2 tan^(-1)(x/2)+C` |
By writing `(x^2 - x - 6)/((x + 1)(x^2 - 3))` in the form `a/(x + 1) + (bx + c)/(x^2 - 3)`,
find `int(x^2 - x - 6)/((x + 1)(x^2 - 3))\ dx`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`2 ln |\ x + 1\ | – 1/2 ln |\ x^2 – 3\ | + c`
| `(x^2 – x – 6)/((x + 1)(x^2 – 3))` | `≡ a/(x + 1) + (bx + c)/(x^2 – 3)` |
| `x^2 – x – 6` | `≡ a(x^2 – 3) + (bx + c)(x + 1)` |
`text(When)\ x = −1`
`1 + 1 – 6 = −2a\ \ =>\ \ a = 2`
`text(Equating co-efficients of)\ x^2`
`1 = (a + b)x^2\ \ =>\ \ b = −1`
`text(Equating co-efficients of)\ x`
`−1 = b + c\ \ =>\ \ c = 0`
| `:. int(x^2 – x – 6)/((x + 1)(x^2 – 3))\ dx` | `= int2/(x + 1) – x/(x^2 – 3)\ dx` |
| `= 2 ln |\ x + 1\ | – 1/2 ln |\ x^2 – 3\ | + c` |
It can be shown that
`2/(x^3 + x^2 + x + 1) = 1/(x + 1) - x/(x^2 + 1) + 1/(x^2 + 1).` (Do NOT prove this.)
Use this result to evaluate `int_(1/2)^2 2/(x^3 + x^2 + x + 1)\ dx.` (4 marks)
`tan^-1 2 – tan^-1 1/2`
`int_(1/2)^2 2/(x^3 + x^2 + x + 1)\ dx`
`=int_(1/2)^2 (1/(x + 1) – x/(x^2 + 1) + 1/(x^2 + 1)) dx`
`=[log_e(x + 1) – 1/2 log_e (x^2 + 1) + tan^-1 x]_(1/2)^2`
`=[(log_e 3 – 1/2 log_e 5 + tan^-1 2) – (log_e 3/2 – 1/2 log_e 5/4 + tan^-1 1/2)]`
`=log_e\ 3/sqrt5 -log_e (3/2 xx 2/sqrt5) + tan^-1 2 – tan^-1 1/2`
`=log_e (3/sqrt(5) xx sqrt (5)/3) + tan^-1 2 – tan^-1 1/2`
`=tan^-1 2 – tan^-1 1/2`
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `(16x – 43)/((x – 3)^2 (x + 2)) = a/(x – 3)^2 + b/(x – 3) + c/(x + 2)`
`16x – 43 = a (x + 2) + b (x – 3) (x + 2) + c (x – 3)^2`
`text(When)\ \ x = 3,\ \ 5a =5\ \ =>a=1`
`text(When)\ \ x=–2,\ \ 25c=–75\ \ =>c=–3`
`text(When)\ \ x=0`
| `-43` | `= 2(1) – 6b + (-3)(-3)^2` |
| `6b` | `= 18` |
| `b` | `=3` |
`:.a=1, b=3, c=–3`
ii. `int (16x – 43)/((x – 3)^2 (x + 2))\ dx`
`=int (1/(x – 3)^2 + 3/(x – 3) – 3/(x + 2))\ dx`
`=-1/(x – 3) + 3ln(x – 3) -3ln(x + 2) + c`
`=-1/(x-3)+3ln((x-3)/(x+2)) +c`
Find `int 1/(x(x^2 + 1))\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`ln\ |\ x\ | + 1/2ln\ (x^2 + 1) + c`
`text(Using partial fractions:)`
| `1/(x(x^2 + 1)) =` | `a/x + (bx + c)/(x^2 + 1)` |
| `1=` | `a(x^2+1)+x(bx+c)` |
| `1=` | `(a + b)x^2 + cx + a` |
| `:.c = 0, \ \ a = 1,\ \ b = -1` | |
| `:.int 1/(x(x^2 + 1))\ dx` | `=int(1/x − x/(x^2 + 1))\ dx` |
| `=ln\ |\ x\ |-1/2ln\ (x^2 + 1) + c` |
--- 5 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `1/(x^2 (x – 1)) = a/x + b/x^2 + c/(x – 1)`
`1 = ax (x – 1) + b (x – 1) + cx^2`
`1 = ax^2 + cx^2 – ax + bx – b`
`1=(a+c)x^2+(b-a)x-b`
`text(Equating coefficients:)`
`=>0 = a + c,\ \ \ b – a = 0,\ \ \ -b = 1`
`:.a = -1,\ \ \ b = -1,\ \ \ c = 1`
| ii. `int 1/(x^2 (x – 1)) \ dx` | `= int(-1/x – 1/x^2 + 1/(x – 1))\ dx` |
| `= -log_e x + 1/x + log_e (x – 1) + c` | |
| `= log_e\ ((x – 1)/x) + 1/x + c` |