It can be shown that
`qquad (8(1-x))/((2-x^2)(2-2x+x^2)) = (4-2x)/(2-2x+x^2)-(2x)/(2-x^2)` (do NOT prove this)
Use this result to evaluate `int_0^1 (8(1-x))/((2-x^2)(2-2x+x^2))\ dx` (4 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
It can be shown that
`qquad (8(1-x))/((2-x^2)(2-2x+x^2)) = (4-2x)/(2-2x+x^2)-(2x)/(2-x^2)` (do NOT prove this)
Use this result to evaluate `int_0^1 (8(1-x))/((2-x^2)(2-2x+x^2))\ dx` (4 marks)
`pi/2`
`int_0^1 (8(1-x))/((2-x^2)(2-2x+x^2))\ dx`
`=int_0^1 (4-2x)/(2-2x+x^2)\ dx-int_0^1 (2x)/(2-x^2)\ dx`
`=int_0^1 (2-(2x-2))/(2-2x+x^2)\ dx + [log_e|2-x^2|]_0^1`
`=int_0^1 2/(1+(1-x)^2)-int_0^1 (2x-2)/(2-2x+x^2) + [log_e|2-x^2|]_0^1`
`=[-2tan^(-1)(1-x)]_0^1-[log_e(2-2x+x^2)]_0^1 + [log_e|2-x^2|]_0^1`
`=-2tan^(-1)0+2tan^(-1) 1-(log_e1-log_e2) + (log_e 1-log_e2)`
`=0+2 xx pi/4 + log_e2-log_e 2`
`=pi/2`
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `(5x^2-3x+13)/((x-1)(x^2+4)) ≡ (a(x^2+4) + (bx-1)(x-1))/((x-1)(x^2+4))`
`text(Equating numerators:)`
`5x^2-3x+13` | `=ax^2+4a+bx^2-bx-x+1` | |
`=(a+b)x^2+(-b-1)x+4a+1` |
`-b-1` | `=-3\ \ =>\ \ b=2` | |
`a` | `=3` |
ii. | `int (5x^2-3x+13)/((x-1)(x^2+4)) \ dx` | `=int 3/(x-1)\ dx-int (2x)/(x^2+4)\ dx-int 1/(4+x^2)\ dx` |
`=3 log_e|x-1|-log_e |x^2+4|-1/2 tan^(-1)(x/2)+C` |
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `(5x)/(x^2-x-6) ≡ (a(x+2) +b(x-3))/((x-3)(x+2))`
`text(Equating numerators:)`
`5x` | `=ax+2a+bx-3b` | |
`5x` | `=(a+b)x+2a-3b` |
`a+b` | `=5\ \ …\ (1)` | |
`2a-3b` | `=0\ …\ (2)` |
`(1) xx 2 – (2)`
`5b` | `=10` |
`b` | `= 2` |
`a` | `=3` |
ii. | `int (5x)/(x^2-x-6)\ dx` | `=int 3/(x-3)\ dx + int 2/(x+2)\ dx` |
`=3 log_e | x-3 | + 2 log_e | x+2 |+C` |
By writing `(x^2 - x - 6)/((x + 1)(x^2 - 3))` in the form `a/(x + 1) + (bx + c)/(x^2 - 3)`,
find `int(x^2 - x - 6)/((x + 1)(x^2 - 3))\ dx`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`2 ln |\ x + 1\ | – 1/2 ln |\ x^2 – 3\ | + c`
`(x^2 – x – 6)/((x + 1)(x^2 – 3))` | `≡ a/(x + 1) + (bx + c)/(x^2 – 3)` |
`x^2 – x – 6` | `≡ a(x^2 – 3) + (bx + c)(x + 1)` |
`text(When)\ x = −1`
`1 + 1 – 6 = −2a\ \ =>\ \ a = 2`
`text(Equating co-efficients of)\ x^2`
`1 = (a + b)x^2\ \ =>\ \ b = −1`
`text(Equating co-efficients of)\ x`
`−1 = b + c\ \ =>\ \ c = 0`
`:. int(x^2 – x – 6)/((x + 1)(x^2 – 3))\ dx` | `= int2/(x + 1) – x/(x^2 – 3)\ dx` |
`= 2 ln |\ x + 1\ | – 1/2 ln |\ x^2 – 3\ | + c` |
It is given that `x^4 + 4 = (x^2 + 2x + 2) (x^2-2x + 2)`.
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `16/(x^4 + 4) = (A + 2x)/(x^2 + 2x + 2) + (B-2x)/(x^2-2x + 2)`
`text(Multiply each side by)\ \ x^4 + 4`
`16 = (A + 2x) (x^2-2x + 2) + (B-2x) (x^2 + 2x + 2)`
`text(When)\ \ x = 0,`
`2A + 2B` | `=16` |
`A + B` | `= 8\ text{… (1)}` |
`text(When)\ \ x = 1`
`(A + 2) (1) + (B-2) (5)` | `=16` |
`A + 2 + 5B-10` | `=16` |
`A + 5B` | `= 24\ text{… (2)}` |
`text{Subtract (2) – (1)}`
`4B=16\ \ =>\ \ B=4`
`A=4`
ii. `int_0^m 16/(x^4 + 4)`
`= int_0^m (4 + 2x)/(x^2 + 2x + 2) dx + int_0^m (4-2x)/(x^2-2x + 2) dx`
`= int_0^m (2x + 2)/(x^2 + 2x + 2) + 2/(x^2 + 2x + 2) dx + int_0^m 2/(x^2-2x + 2)-(2x-2)/(x^2-2x + 2) dx`
`= [ln(x^2 + 2x + 2)]_0^m + int_0^m 2/(1 + (x + 1)^2) dx + int_0^m 2/(1 + (x-1)^2) dx-[ln (x^2-2x + 2)]_0^m`
`= [ln(m^2 + 2m + 2)-ln 2] + [2 tan^(-1) (x + 1)]_0^m + [2 tan^(-1) (x-1)]_0^m-[ln (m^2-2m + 2)-ln 2]`
`= ln ((m^2 + 2m + 2)/(m^2-2m + 2)) + 2 [tan^(-1) (m + 1)-tan^(-1) (1)] + 2 [tan^(-1) (m-1)-tan^(-1) (1)]`
`= ln ((m^2 + 2m + 2)/(m^2-2m + 2)) + 2 tan^(-1) (m + 1)-2 · pi/4 + 2 tan ^(-1) (m-1) + 2 · pi/4`
`= ln ((m^2 + 2m + 2)/(m^2-2m + 2)) + 2 tan^(-1) (m + 1) + 2 tan^(-1) (m-1)`
iii. `I = int_0^m 16/(x^4 + 4) = ln ((1 + 2/m + 2/m^2)/(1-2/m + 2/m^2)) + 2 tan^(-1) (m + 1) + 2 tan^(-1) (m-1)`
`lim_(m -> oo) I` | `= ln\ 1 + 2 · pi/2 + 2 · pi/2` |
`= 0 + pi + pi` | |
`= 2 pi` |
It can be shown that
`2/(x^3 + x^2 + x + 1) = 1/(x + 1) - x/(x^2 + 1) + 1/(x^2 + 1).` (Do NOT prove this.)
Use this result to evaluate `int_(1/2)^2 2/(x^3 + x^2 + x + 1)\ dx.` (4 marks)
`tan^-1 2 – tan^-1 1/2`
`int_(1/2)^2 2/(x^3 + x^2 + x + 1)\ dx`
`=int_(1/2)^2 (1/(x + 1) – x/(x^2 + 1) + 1/(x^2 + 1)) dx`
`=[log_e(x + 1) – 1/2 log_e (x^2 + 1) + tan^-1 x]_(1/2)^2`
`=[(log_e 3 – 1/2 log_e 5 + tan^-1 2) – (log_e 3/2 – 1/2 log_e 5/4 + tan^-1 1/2)]`
`=log_e\ 3/sqrt5 -log_e (3/2 xx 2/sqrt5) + tan^-1 2 – tan^-1 1/2`
`=log_e (3/sqrt(5) xx sqrt (5)/3) + tan^-1 2 – tan^-1 1/2`
`=tan^-1 2 – tan^-1 1/2`
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `(16x – 43)/((x – 3)^2 (x + 2)) = a/(x – 3)^2 + b/(x – 3) + c/(x + 2)`
`16x – 43 = a (x + 2) + b (x – 3) (x + 2) + c (x – 3)^2`
`text(When)\ \ x = 3,\ \ 5a =5\ \ =>a=1`
`text(When)\ \ x=–2,\ \ 25c=–75\ \ =>c=–3`
`text(When)\ \ x=0`
`-43` | `= 2(1) – 6b + (-3)(-3)^2` |
`6b` | `= 18` |
`b` | `=3` |
`:.a=1, b=3, c=–3`
ii. `int (16x – 43)/((x – 3)^2 (x + 2))\ dx`
`=int (1/(x – 3)^2 + 3/(x – 3) – 3/(x + 2))\ dx`
`=-1/(x – 3) + 3ln(x – 3) -3ln(x + 2) + c`
`=-1/(x-3)+3ln((x-3)/(x+2)) +c`
--- 5 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `1/(x^2 (x – 1)) = a/x + b/x^2 + c/(x – 1)`
`1 = ax (x – 1) + b (x – 1) + cx^2`
`1 = ax^2 + cx^2 – ax + bx – b`
`1=(a+c)x^2+(b-a)x-b`
`text(Equating coefficients:)`
`=>0 = a + c,\ \ \ b – a = 0,\ \ \ -b = 1`
`:.a = -1,\ \ \ b = -1,\ \ \ c = 1`
ii. `int 1/(x^2 (x – 1)) \ dx` | `= int(-1/x – 1/x^2 + 1/(x – 1))\ dx` |
`= -log_e x + 1/x + log_e (x – 1) + c` | |
`= log_e\ ((x – 1)/x) + 1/x + c` |