SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT2 C1 2025 HSC 13d

Evaluate  \(\displaystyle \large{\int_0^{\small{\dfrac{\pi}{2}}}}\)\(\dfrac{u}{1+\sin u+\cos u} \, du\), by first using the substitution  \(u=\dfrac{\pi}{2}-x\).   (4 marks)

--- 15 WORK AREA LINES (style=lined) ---

Show Answers Only

 

Show Worked Solution

\(\displaystyle \large{\int_0^{\small{\dfrac{\pi}{2}}}}\)\(\dfrac{u}{1+\sin u+\cos u} \, du\)

\(\text{Let} \ \ u=\dfrac{\pi}{2}-x \ \ \Rightarrow\ \ \dfrac{du}{dx}=-1 \ \ \Rightarrow\ \ du=-dx\)

\(\text{Limits:} \ \ u=\dfrac{\pi}{2}\ \ \Rightarrow\ \ x=0, \ \ u=0\ \ \Rightarrow\ \ x=\dfrac{\pi}{2}\)

\(I\) \(=-\displaystyle \large{\int_{\small{\dfrac{\pi}{2}}}^0}\)\(\dfrac{\dfrac{\pi}{2}-x}{1+\sin \left(\dfrac{\pi}{2}-x\right)+\cos \left(\dfrac{\pi}{2}-x\right)}\,dx\)
  \(=\displaystyle \large{\int_0^{\small{\dfrac{\pi}{2}}}}\)\(\dfrac{\dfrac{\pi}{2}-x}{1+\cos x+\sin x}\, d x\)

 

\(\text{Add \(I\) (swap variable from \(x\) to \(u\)) to original integral:}\)

\(2I=\dfrac{\pi}{2} \displaystyle \large{\int_0^{\small{\dfrac{\pi}{2}}}}\)\(\dfrac{1}{1+\sin u+\cos u}\, d u\)

\(\text{Substitute} \ \ t=\tan \left(\frac{u}{2}\right), \ \sin u=\dfrac{2t}{1+t^2}, \ \cos u=\dfrac{1-t^2}{1+t^2}\)

\(d t=\dfrac{1}{2} \sec ^2\left(\frac{u}{2}\right)\, du \ \ \Rightarrow\ \ du=\dfrac{2}{1+\tan ^2\left(\frac{u}{2}\right)}\, dt=\dfrac{2}{1+t^2}\, d t\)

\(\text{Limits:} \ \ n=\dfrac{\pi}{2}\  \Rightarrow \ t=1, \ n=0 \ \Rightarrow \ t=0\)

\(2I\) \(=\dfrac{\pi}{2} \displaystyle \int_0^1 \dfrac{1}{1+\frac{2 t}{1+t^2}+\frac{1-t^2}{1+t^2}} \times \frac{2}{1+t^2}\,d t\)
\(I\) \(=\displaystyle\frac{\pi}{4} \int_0^1 \frac{2}{1+t^2+2 t+1-t^2}\, d t\)
  \(=\displaystyle \frac{\pi}{4} \int_0^1 \frac{1}{1+t}\, d t\)
  \(=\dfrac{\pi}{4}\Bigl[\ln (1+t)\Bigr]_0^1\)
  \(=\dfrac{\pi}{4}(\ln 2-\ln 1)\)
  \(=\dfrac{\pi \, \ln 2}{4}\)

Filed Under: Substitution and Harder Integration Tagged With: Band 5, smc-1057-10-Trig, smc-1057-50-Substitution given

Calculus, EXT2 C1 2022 SPEC2 7 MC

Using the substitution  `u=1+e^x, \int_0^{\log _e 2} \frac{1}{1+e^x}dx`  can be expressed as

  1. `\int_0^{\log _e 2}\left(\frac{1}{u-1}-\frac{1}{u}\right) du`
  2. `\int_2^3\left(\frac{1}{u}-\frac{1}{u-1}\right) du`
  3. `\int_1^3\left(\frac{1}{u}-\frac{1}{u-1}\right) du`
  4. `\int_2^3\left(\frac{1}{u-1}-\frac{1}{u}\right) du`
Show Answers Only

`D`

Show Worked Solution

`u=1+e^x\ \ =>\ \ \frac{du}{dx}=e^x\ \ =>\ \ dx=\frac{du}{e^x}=\frac{du}{u-1}`

`text{When}\ \ x=0,\ \ u=2`

`text{When}\ \ x=\log_e 2,\ \ u=1+e^{\log_e 2} = 3`

`\int_0^{\log _e 2} \frac{1}{1+e^x}dx = \int_2^3\left(\frac{1}{u}*\frac{1}{u-1}\right) du= \int_2^{1+e^2}\left(\frac{1}{u-1}-\frac{1}{u}\right) du`

`=>D`

Filed Under: Substitution and Harder Integration Tagged With: Band 4, smc-1057-30-Exponential, smc-1057-50-Substitution given

Calculus, EXT2 C1 2022 HSC 15c

Using the substitution  `x=tan^(2)theta`, evaluate

          `int_(0)^(1)sin^(-1)sqrt((x)/(1+x))\ dx`  (4 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

`pi/2-1`

Show Worked Solution

`x=tan^(2)theta`

`dx/(d theta)=2sec^2theta\ tantheta\ \ =>\ \ dx=2sec^2theta\ tantheta\ d theta`

`text{When}\ x=0, \ theta=0`

`text{When}\ x=1, \ theta=pi/4`


Mean mark 55%.
`sin^(-1)sqrt((x)/(1+x))` `=sin^(-1)sqrt((tan^(2)theta)/(1+tan^(2)theta))`  
  `=sin^(-1)sqrt((tan^(2)theta)/(text{sec}^(2)theta))`  
  `=sin^(-1)sqrt((sin^(2)theta))`  
  `=sin^(-1)(sintheta)`  
  `=theta`  

 

`int_(0)^(1)sin^(-1)sqrt((x)/(1+x))\ dx=int_(0)^(pi/4)\ theta xx 2sec^2theta\ tantheta\ d theta`
 

`text{Integrating by parts:}`

`u` `=theta` `u′` `=1`
`v′` `=2tan theta\ sec^2 theta` `v` `=tan^(2)theta`

 
`int_(0)^(pi/4)\ theta xx 2sec^2theta\ tantheta\ d theta`

`=[theta\ tan^(2)theta]_0^(pi/4)-int_0^(pi/4)tan^(2)theta\ d theta`

`=(pi/4 xx 1 -0)-int sec^(2)theta-1\ d theta`

`=pi/4-[tan theta-theta]_0^(pi/4)`

`=pi/4-[(1-pi/4)-0]`

`=pi/2-1`

Filed Under: Substitution and Harder Integration Tagged With: Band 4, smc-1055-30-Trig, smc-1057-10-Trig, smc-1057-50-Substitution given, smc-5134-30-Trig

Calculus, EXT2 C1 2022 HSC 11f

Using the substitution  `t=tan\ x/2`, find

`int(dx)/(1+cos x-sin x)`  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

 

Show Answers Only

`-lnabs(1-tan(x/2))+C`

Show Worked Solution

`text(Let)\ \ t = tan\ x/2, \ cos\ x = (1-t^2)/(1 + t^2), \ sin\ x=(2t)/(1+t^2)`

`dt = 1/2 sec^2\ x/2\ dx \ => \ d x = (2\ dt)/(sec^2\ x/2) = 2/(1 + t^2)\ dt`

`text{I}` `= int(dx)/(1+cos x-sin x)`  
  `=int 1/(1+(1-t^2)/(1 + t^2)-(2t)/(1 + t^2)) *2/(1 + t^2)\ dt`  
  `=int 2/(1+t^2+1-t^2-2t)\ dt`  
  `=int 1/(1-t)\ dt`  
  `=-ln abs(1-t)+C`  
  `=-lnabs(1-tan(x/2))+C`  

Filed Under: Substitution and Harder Integration, Trig Integration Tagged With: Band 3, smc-1057-10-Trig, smc-1057-50-Substitution given, smc-1193-20-t = tan theta/2

Calculus, EXT2 C1 2017 HSC 11f

Using the substitution  `x = sin^2 theta`, or otherwise, evaluate  `int_0^(1/2) sqrt(x/(1 - x))\ dx`.  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`pi/4 – 1/2`

Show Worked Solution

`x = sin^2 theta`

`dx = 2 sin theta cos theta\ d theta`

`text(If)\ \ x = 1/2, sin theta = 1/sqrt 2, \ theta = pi/4`

`text(If)\ \ x = 0, \ theta = 0`

`int_0^(1/2) sqrt(x/(1 – x))\ dx` `= int_0^(pi/4) sqrt ((sin^2 theta)/(1 – sin^2 theta)) xx 2 sin theta cos theta\ d theta`
  `= int_0^(pi/4) (sin theta)/(cos theta) xx 2 sin theta cos theta\ d theta`
  `= int_0^(pi/4) 2 sin^2 theta\ d theta`
  `= int_0^(pi/4) 1 – cos 2 theta\ d theta`
  `= [theta – 1/2 sin 2 theta]_0^(pi/4)`
  `= (pi/4 – 1/2 sin {:pi/2) – (0 – 0)`
  `= pi/4 – 1/2`

Filed Under: Harder Integration Examples, Substitution and Harder Integration Tagged With: Band 3, smc-1057-10-Trig, smc-1057-40-Other Functions, smc-1057-50-Substitution given

Calculus, EXT2 C1 2007 HSC 5c

  1. Write  `(x - 1) (5 - x)`  in the form  `b^2 - (x - a)^2`, where  `a`  and `b`  are real numbers.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Using the values of  `a`  and  `b`  found in part (i) and making the substitution  `x - a = b sin theta`, or otherwise, evaluate  
     
         ` int_1^5 sqrt ((x - 1) (5 - x))\ dx.`  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2^2 – (x – 3)^2`
  2. `2 pi`
Show Worked Solution
i.   `(x – 1) (5 – x)` `= 5x – x^2 -5+ x`
  `= -(x^2 – 6x + 5)`
  `= 4 – (x – 3)^2`
  `= 2^2 – (x – 3)^2`

 

ii.    `text(Let)\ \ x – 3` `= 2 sin theta`
  `dx` `= 2 cos theta\ d theta`

 

`text(When)\ \ x = 1,\ \ theta = -pi/2`

`text(When)\ \ x = 5,\ \ theta = pi/2`

`:.int_1^5 sqrt (4 – (x – 3)^2)\ dx`

`=int_((-pi)/2)^(pi/2) sqrt ((4 – 4 sin^2 theta))*2 cos theta\ d theta`
`=4 int_((-pi)/2)^(pi/2) sqrt(cos^2 theta) * cos theta\ d theta`
`=4 int_((-pi)/2)^(pi/2) cos^2 theta\ d theta`
`=2 int_((-pi)/2)^(pi/2) (1 + cos 2 theta)\ d theta`
`=2[theta + (sin 2 theta)/2]_((-pi)/2)^(pi/2)`
`=2[(pi/2 + 0) – ((-pi)/2 – 0)]`
`=2 pi`

Filed Under: Harder Integration Examples, Substitution and Harder Integration, Trig Integrals Tagged With: Band 4, smc-1057-10-Trig, smc-1057-50-Substitution given

Calculus, EXT2 C1 2011 HSC 7b

Let   `I = int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx.`

  1. Use the substitution  `u = 4-x`  to show that
     
          `I = int_1^3 (sin^2(pi/8 u))/(u(4-u))\ du.`  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

     

  2. Hence, find the value of  `I`.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `1/4 log_e 3`
Show Worked Solution

i.   `text(Let)\ \ u = 4-x,\ \ du = -dx,\ \ x = 4-u`

`text(When)\ \ x = 1,\ \ u = 3`

`text(When)\ \ x = 3,\ \ u = 1`

`I` `=int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx`
  `=int_3^1 (cos^2 (pi/8(4-u)))/((4-u)u) (-du)`
  `=-int_3^1 (cos^2(pi/2-pi/8 u))/((4-u)u)\ du`
  `=int_1^3 (sin^2(pi/8 u))/(u (4-u))\ du`

 

ii.   `text{S}text{ince}\ \ int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx = int_1^3 (sin^2(pi/8 x))/(x(4-x))\ dx`

 

`text(We can add the integrals such that)`

`2I` `=int_1^3 (cos^2(pi/8 x))/(x(4-x)) dx + int_1^3 (sin^2(pi/8 x))/(x(4-x)) dx`
  `=int_1^3 1/(x(4-x)) dx`

 

`text(Using partial fractions:)`

♦ Mean mark 36%.
`1/(x(4-x))` `=A/x+B/(4-x)`
`1` `=A(4-x)+Bx`

 
`text(When)\ \ x=0,\ \ A=1/4`

`text(When)\ \ x=0,\ \ B=1/4`

`2I` `=1/4 int_1^3 (1/x + 1/(4-x))\ dx`
  `=1/4 [log_e x-log_e (4-x)]_1^3`
  `=1/4 [log_e 3-log_e 1-(log_e 1-log_e 3)]`
  `=1/2 log_e 3`
`:.I` `=1/4 log_e 3`

Filed Under: Partial Fractions, Partial Fractions and Other Integration (SM), Substitution and Harder Integration, Trig Integrals, Trig Integration Tagged With: Band 3, Band 5, smc-1056-10-Quadratic denom, smc-1056-40-PF not given, smc-1057-10-Trig, smc-1057-50-Substitution given, smc-1193-10-sin/cos, smc-1193-40-Other trig ratios, smc-2565-10-Quadratic denom, smc-2565-60-PF not given

Copyright © 2014–2025 SmarterEd.com.au · Log in