SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Mechanics, EXT2 M1 2025 HSC 15b

A particle moves in simple harmonic motion about the origin with amplitude \(A\), and it completes two cycles per second. When it is \(\dfrac{1}{4}\) metres from the origin, its speed is half its maximum speed.

Find the maximum positive acceleration of the particle during its motion.   (4 marks)

--- 12 WORK AREA LINES (style=lined) ---

Show Answers Only

\(a_{\text{max}}=\dfrac{8 \pi^2}{\sqrt{3}}\)

Show Worked Solution

\(v^2=-n^2\left(x^2-A^2\right)\)

\(\operatorname{Period}\ (T)=\dfrac{1}{2} \ \Rightarrow \ \dfrac{2 \pi}{n}=\dfrac{1}{2} \ \Rightarrow \ n=4 \pi\)

\(\text{Max velocity occurs at}\ \  x=0:\)

   \(v_{\text{max}}^2=-(4 \pi)^2\left(0-A^2\right)=16 \pi^2 A^2\)

   \(v_{\text{max}}=\sqrt{16 \pi^2 A^2}=4 \pi A\)
 

\(\text{At} \ \ x=\dfrac{1}{4}, \ v=\dfrac{1}{2} \times 4 \pi A=2 \pi A\)

\((2 \pi A)^2\) \(=-(4 \pi)^2\left(\dfrac{1}{16}-A^2\right)\)
\(\dfrac{A^2}{4}\) \(=A^2-\dfrac{1}{16}\)
\(\dfrac{3 A^2}{4}\) \(=\dfrac{1}{16}\)
\(A^2\) \(=\dfrac{1}{12}\)
\(A\) \(=\dfrac{1}{\sqrt{12}}\)

 

\(\text{Max positive acceleration occurs at} \ \ x=-\dfrac{1}{\sqrt{12}}:\)

\(a_{\text{max}}=-n^2 x=-(4 \pi)^2 \times-\dfrac{1}{\sqrt{12}}=\dfrac{8 \pi^2}{\sqrt{3}}\)

Filed Under: Simple Harmonic Motion Tagged With: Band 4, Band 5, smc-1059-10-Amplitude / Period, smc-1059-31-Max Speed

Mechanics, EXT2* M1 2019 HSC 12b

A particle is moving along the `x`-axis in simple harmonic motion. The position of the particle is given by

`x = sqrt 2 cos 3t + sqrt 6 sin 3t,` for  `t >= 0` 

  1. Write  `x`  in the form  `R cos(3t - alpha)`, where  `R > 0`  and  `0 < alpha < pi/2`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the two values for  `x`  where the particle comes to rest.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. When is the first time that the speed of the particle is equal to half of its maximum speed?  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `x = 2 sqrt 2 cos (3t – pi/3)`
  2. `2 sqrt 2 or -2 sqrt 2`
  3. `t = pi/18`
Show Worked Solution

i.    `x = sqrt 2 cos 3t + sqrt 6 sin 3t`

`R cos (3t – alpha) = R cos alpha cos 3t + R sin alpha sin 3t`

`=> R cos alpha = sqrt 2`

`=> R sin alpha = sqrt 6`

`R^2 cos^2 alpha + R^2 sin^2 alpha` `= 2 + 6`
`R^2 (cos^2 alpha + sin^2 alpha)` `= 8`
`R` `=2sqrt2`

  

`2 sqrt 2 cos alpha` `= sqrt 2`
`cos alpha` `= 1/2`
`alpha` `= pi/3`

 
`:. x = 2 sqrt 2 cos (3t – pi/3)`

♦ Mean mark part (ii) 46%.

 

ii.    `text(At the extremities of the amplitude,)`
 

`text(the particle stops and reverses.)`

`:. v = 0\ \ text(when)\ \ x = 2 sqrt 2 or -2 sqrt 2`

 

iii.   `x = 2 sqrt 2 cos (3t – pi/3)`

♦ Mean mark part (iii) 49%.

`(dx)/(dt) = -6 sqrt 2 sin(3t – pi/3)`

 
`text(Max speed) = 6 sqrt 2`

`text(Find)\ \ t\ \ text(when)\ \ (dx)/(dt) = +-3 sqrt 2`

`-6 sqrt 2 sin (3t – pi/3)` `= 3 sqrt 2`
`sin(3t – pi/3)` `= -1/2`
`3t – pi/3` `= -pi/6`
`3t` `= pi/6`
`t` `= pi/18`

 

`-6 sqrt 2 sin (3t – pi/3)` `= -3 sqrt 2`
`sin(3t – pi/3)` `= 1/2`
`3t – pi/3` `= pi/6`
`3t` `= pi/2`
`t` `= pi/6`

 
`:. t = pi/18\ text{(1st time)}`

Filed Under: Simple Harmonic Motion Tagged With: Band 4, Band 5, smc-1059-30-At Rest, smc-1059-31-Max Speed, smc-1059-40-Auxiliary Angles

Mechanics, EXT2* M1 2016 HSC 13a

The tide can be modelled using simple harmonic motion.

At a particular location, the high tide is 9 metres and the low tide is 1 metre.

At this location the tide completes 2 full periods every 25 hours.

Let `t` be the time in hours after the first high tide today.

  1. Explain why the tide can be modelled by the function  `x = 5 + 4cos ((4pi)/25 t)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. The first high tide tomorrow is at 2 am.

     

    What is the earliest time tomorrow at which the tide is increasing at the fastest rate?  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `11:22:30\ text(am)`
Show Worked Solution
i.    `text(High tide)` `= 9\ text(m)`
  `text(Low tide)` `= 1\ text(m)`

 
`:. A = (9 – 1)/2 = 4\ text(m)`

`T = 25/2`

`:. (2 pi)/n` `= 25/2`
`n` `= (4 pi)/25`

 

`text(Centre of motion) = 5`

 

`text(S) text(ince high tide occurs at)\ \ t = 0,`

`x` `= 5 + 4 cos (nt)`
  `= 5 + 4 cos ((4 pi)/25 t)`

 

ii.   `x = 5 + 4 cos ((4 pi)/25 t)`

`(dx)/(dt)` `= -4 · (4 pi)/25 *sin ((4 pi)/25 t)`
  `= -(16 pi)/25 *sin ((4 pi)/25 t)`

 

`text(Tide increases at maximum rate)`

`text(when)\ \ sin ((4 pi)/25 t) = -1,`

`:. (4 pi)/25 t` `= (3 pi)/2`
  `= 75/8`
  `= 9\ text(hours 22.5 minutes)`

 

`:.\ text(Earliest time is)\ 11:22:30\ text(am)`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 4, Band 5, smc-1059-20-Prove/Identify SHM, smc-1059-31-Max Speed, smc-1059-50-Real World examples

Mechanics, EXT2* M1 2016 HSC 7 MC

The displacement `x` of a particle at time `t` is given by

`x = 5 sin 4t + 12 cos 4t`.

What is the maximum velocity of the particle?

  1. `13`
  2. `28`
  3. `52`
  4. `68`
Show Answers Only

`C`

Show Worked Solution

`x = 5 sin 4t + 12 cos 4t`

`(dx)/(dt) = 20 cos 4t – 48 sin 4t`

 `=>\ text(Can be written in the form:)`

`A cos (4t + alpha),\ text(where)`

`A` `= sqrt (20^2 + 48^2)`
  `= 52`

 
`:. text(Max)\ v = 52\ text(ms)^-1`

`=>   C`

Filed Under: 5. Trig Ratios EXT1, Other Motion EXT1, Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 4, smc-1059-31-Max Speed, smc-1059-40-Auxiliary Angles

Mechanics, EXT2* M1 2005 HSC 5c

A particle moves in a straight line and its position at time  `t`  is given by

`x = 5 + sqrt 3 sin3t - cos 3t.`

  1. Express  `sqrt 3 sin3t − cos 3t`  in the form  `R sin(3t - alpha)`  where  `alpha`  is in radians.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. The particle is undergoing simple harmonic motion. Find the amplitude and the centre of the motion.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. When does the particle first reach its maximum speed after time  `t = 0`?  (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2 sin ( 3t – pi/6)`
  2. `text(Amplitude) = 2\ text(units),\ \ \ text(Centre of the motion at)\ \ x = 5`
  3. `pi/18`
Show Worked Solution

i.    `x = 5 + sqrt 3 sin 3t – cos 3t`

`sqrt 3 sin 3t – cos 3t` `= R sin (3t – alpha)`
  `= R sin 3t cos alpha – R cos 3t sin alpha`

 
`=> R cos alpha = sqrt 3\ \ \ \ \ R sin alpha = 1`

`R^2 = sqrt 3^2 + 1^2 = 4`

`R = 2`

`=> 2 cos alpha` `= sqrt3`
`cos alpha` `= (sqrt3)/2`
`alpha` `= pi/6`

 
`:.\ 2 sin ( 3t – pi/6) = sqrt 3 sin 3t – cos 3t`

 

ii.  `x` `= 5 + sqrt 3 sin 3t – cos 3t`
  `= 5 + 2 sin (3t – pi/6)`

 
`text(Amplitude) = 2\ text(units)`

`text(Centre of motion at)\ \ x = 5`

 

iii.  `text(Solution 1)`

`x = 5 + 2 sin (3t – pi/6)`

`dot x = 6 cos (3t – pi/6)`

 
`text(Maximum speed occurs when)`

`cos (3t – pi/6)` `= 1`
`3t – pi/6` `= 0`
`3t` `= pi/6`
`t` `= pi/18`

 
`text(Solution 2)`

`text(Maximum speed occurs at the)`

`text(centre of motion,)\ \ x = 5`

`5 + 2 sin (3t – pi/6)` `= 5`
`2 sin (3t – pi/6)` `= 0`
`sin (3t – pi/6)` `= 0`
`3t – pi/6` `= 0`
`t` `= pi/18`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 4, Band 5, smc-1059-10-Amplitude / Period, smc-1059-31-Max Speed, smc-1059-40-Auxiliary Angles

Mechanics, EXT2* M1 2015 HSC 13a

A particle is moving along the `x`-axis in simple harmonic motion. The displacement of the particle is `x` metres and its velocity is `v` ms`\ ^(–1)`. The parabola below shows `v^2` as a function of `x`.

2015 13a

  1. For what value(s) of `x` is the particle at rest?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. What is the maximum speed of the particle?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. The velocity `v` of the particle is given by the equation

         `v^2 = n^2(a^2 − (x −c)^2)`  where `a`, `c` and `n` are positive constants.

     

    What are the values of `a`, `c` and `n`?  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `3\ text(or)\ 7`
  2. `V = sqrt11\ text(m/s)`
  3. `a = 2, c = 5,`
  4. `n = (sqrt11)/2`
Show Worked Solution

i.   `text(Particle is at rest when)\ v^2 = 0`

`:. x = 3\ \ text(or)\ \ 7`

 

ii.   `text(Maximum speed occurs when)`

`v^2` `= 11`
`v` `= sqrt11\ text(m/s)`

 

iii.  `v^2 = n^2(a^2 − (x − c)^2)`

♦ Mean mark 41%.

`text(Amplitude) = 2`

`:.a = 2`

`text(Centre of motion when)\ x = 5`

`:.c = 5`

`text(S)text(ince)\ \ v^2 = 11\ \ text(when)\ \ x = 5`

`11` `= n^2(2^2 − (5 − 5)^2)`
  `= 4n^2`
`n^2` `= 11/4`
`:.n`  `= sqrt11/2`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 3, Band 4, Band 5, smc-1059-10-Amplitude / Period, smc-1059-20-Prove/Identify SHM, smc-1059-30-At Rest, smc-1059-31-Max Speed

Mechanics, EXT2* M1 2009 HSC 5a

The equation of motion for a particle moving in simple harmonic motion is given by

`(d^2x)/(dt^2) = -n^2x`

where  `n`  is a positive constant,  `x`  is the displacement of the particle and  `t`  is time.  

  1. Show that the square of the velocity of the particle is given by
     
         `v^2 = n^2 (a^2\ - x^2)`

     

    where  `v = (dx)/(dt)`  and  `a`  is the amplitude of the motion.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the maximum speed of the particle.     (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Find the maximum acceleration of the particle.    (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. The particle is initially at the origin. Write down a formula for  `x`  as a function of  `t`, and hence find the first time that the particle’s speed is half its maximum speed.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `na`
  3. `n^2 a`
  4. `pi/(3n)`
Show Worked Solution
i.    `text(Show)\ \ v^2 = n^2 (a^2\ – x^2)`

`(d^2x)/(dt^2) = -n^2x`

`d/(dx) (1/2 v^2)` `= -n^2 x`
`1/2 v^2` `= int -n^2x\ dx`
  `= (-n^2 x^2)/2 + c`
`v^2` `= -n^2 x^2 + c`

 
`text(When)\ \ v = 0,\ \ x = a`

`0` `= -n^2a + c`
`c` `= n^2 a^2`
`:.\ v^2` `= -n^2 x^2 + n^2 a^2`
  `= n^2 (a^2\ – x^2)\ \ text(… as required)`

 

ii.    `text(Max speed when)\ \ x = 0`
`v^2` `= n^2 (a^2\ – 0)`
  `= n^2 a^2`
`:.v_text(max)` `= na`

 

iii.   `(d^2x)/(dt^2)\ \ text(is maximum at limits)\ \ (x = +-a)`
`(d^2x)/(dt^2)` `= |n^2 (a)|`
  `= n^2 a`

 

iv.   `x` `= a sin nt`
  `dot x` `= an cos nt`

 

`text(Find)\ \ t\ \ text(when)\ \ dot x = (na)/2`

`(na)/2` `= an cos nt`
`cos nt` `= 1/2`
`nt` `= pi/3`
`:.t` `= pi/(3n)`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 4, Band 5, smc-1059-20-Prove/Identify SHM, smc-1059-31-Max Speed

Mechanics, EXT2* M1 2010 HSC 4a

A particle is moving in simple harmonic motion along the `x`-axis. 

Its velocity `v`, at `x`, is given by  `v^2 = 24 − 8x − 2x^2`. 

  1. Find all values of `x` for which the particle is at rest.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find an expression for the acceleration of the particle, in terms of `x`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Find the maximum speed of the particle.    (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `x = –6\ \ text(or)\ \ 2`
  2. `-4\ – 2x`
  3. `4 sqrt 2`
Show Worked Solution
(i)    `v^2 = 24\ – 8x\ – 2x^2`

`text(Find)\ \ x\ \ text(when)\ \ v=0`

`24 – 8x – 2x^2` `= 0`
`x^2 + 4x – 12` `= 0`
`(x + 6)(x – 2)` `= 0`
`x= -6\ \ text(or)\ \ 2`

 

`:.\ text(Particle at rest when)\ \ x = –6\ \ text(or)\ \ 2`

 

(ii)    `ddot x` `= d/(dx) (1/2 v^2)`
    `= d/(dx) (12 – 4x – x^2)`
    `= -4 – 2x`

 

(iii)   `text(Solution 1)`

`text(Max speed when)\ \ ddot x = 0`

`-4 – 2x` `= 0`
`2x` `= -4`
`x` `= -2`

`text(At)\ \ x = -2`

MARKER’S COMMENT: While most students found `x=-2` correctly, too many made errors substituting this back in or failed to finish the answer by taking the square root. BE CAREFUL! .
`v^2` `= 24 – 8(–2) – 2(–2)^2`
  `= 24 + 16 – 8`
  `= 32`
`v` `= +- sqrt32`
  `= +- 4 sqrt2`

`:.\ text(Maximum speed is)\ \ 4 sqrt2`

 

`text(Alternate Answer)`

`text(Maximum speed occurs when)`

`x = (-6+2)/2 = –2`

`text(At)\ \ x = –2`

`v^2` `= 32\ \ \ text{(see working above)}`
`v` `= +- 4 sqrt 2`

 

`:.\ text(Maximum speed is)\ 4sqrt2`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 3, Band 4, smc-1059-30-At Rest, smc-1059-31-Max Speed

Copyright © 2014–2025 SmarterEd.com.au · Log in