SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Mechanics, EXT2* M1 2019 HSC 12b

A particle is moving along the `x`-axis in simple harmonic motion. The position of the particle is given by

`x = sqrt 2 cos 3t + sqrt 6 sin 3t,` for  `t >= 0` 

  1. Write  `x`  in the form  `R cos(3t - alpha)`, where  `R > 0`  and  `0 < alpha < pi/2`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the two values for  `x`  where the particle comes to rest.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. When is the first time that the speed of the particle is equal to half of its maximum speed?  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `x = 2 sqrt 2 cos (3t – pi/3)`
  2. `2 sqrt 2 or -2 sqrt 2`
  3. `t = pi/18`
Show Worked Solution

i.    `x = sqrt 2 cos 3t + sqrt 6 sin 3t`

`R cos (3t – alpha) = R cos alpha cos 3t + R sin alpha sin 3t`

`=> R cos alpha = sqrt 2`

`=> R sin alpha = sqrt 6`

`R^2 cos^2 alpha + R^2 sin^2 alpha` `= 2 + 6`
`R^2 (cos^2 alpha + sin^2 alpha)` `= 8`
`R` `=2sqrt2`

  

`2 sqrt 2 cos alpha` `= sqrt 2`
`cos alpha` `= 1/2`
`alpha` `= pi/3`

 
`:. x = 2 sqrt 2 cos (3t – pi/3)`

♦ Mean mark part (ii) 46%.

 

ii.    `text(At the extremities of the amplitude,)`
 

`text(the particle stops and reverses.)`

`:. v = 0\ \ text(when)\ \ x = 2 sqrt 2 or -2 sqrt 2`

 

iii.   `x = 2 sqrt 2 cos (3t – pi/3)`

♦ Mean mark part (iii) 49%.

`(dx)/(dt) = -6 sqrt 2 sin(3t – pi/3)`

 
`text(Max speed) = 6 sqrt 2`

`text(Find)\ \ t\ \ text(when)\ \ (dx)/(dt) = +-3 sqrt 2`

`-6 sqrt 2 sin (3t – pi/3)` `= 3 sqrt 2`
`sin(3t – pi/3)` `= -1/2`
`3t – pi/3` `= -pi/6`
`3t` `= pi/6`
`t` `= pi/18`

 

`-6 sqrt 2 sin (3t – pi/3)` `= -3 sqrt 2`
`sin(3t – pi/3)` `= 1/2`
`3t – pi/3` `= pi/6`
`3t` `= pi/2`
`t` `= pi/6`

 
`:. t = pi/18\ text{(1st time)}`

Filed Under: Simple Harmonic Motion Tagged With: Band 4, Band 5, smc-1059-30-At Rest, smc-1059-31-Max Speed, smc-1059-40-Auxiliary Angles

Mechanics, EXT2* M1 2016 HSC 7 MC

The displacement `x` of a particle at time `t` is given by

`x = 5 sin 4t + 12 cos 4t`.

What is the maximum velocity of the particle?

  1. `13`
  2. `28`
  3. `52`
  4. `68`
Show Answers Only

`C`

Show Worked Solution

`x = 5 sin 4t + 12 cos 4t`

`(dx)/(dt) = 20 cos 4t – 48 sin 4t`

 `=>\ text(Can be written in the form:)`

`A cos (4t + alpha),\ text(where)`

`A` `= sqrt (20^2 + 48^2)`
  `= 52`

 
`:. text(Max)\ v = 52\ text(ms)^-1`

`=>   C`

Filed Under: 5. Trig Ratios EXT1, Other Motion EXT1, Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 4, smc-1059-31-Max Speed, smc-1059-40-Auxiliary Angles

Mechanics, EXT2* M1 2007 HSC 6a

A particle moves in a straight line. Its displacement, `x` metres, after `t` seconds is given by

`x = sqrt3\ sin\ 2t − cos\ 2t + 3`.

  1. Prove that the particle is moving in simple harmonic motion about  `x = 3`  by showing that   `ddot x = -4(x − 3)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. What is the period of the motion?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Express the velocity of the particle in the form  `dotx = A\ cos\ (2t − α)`, where  `α`  is in radians.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  4. Hence, or otherwise, find all times within the first  `pi`  seconds when the particle is moving at `2` metres per second in either direction.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solutions.)}`
  2. `pi\ text(seconds)`
  3. `dot x = 4\ cos\ (2t − pi/6)`
  4. `t = pi/4, (5pi)/12, (3pi)/4, (11pi)/12\ text(seconds.)`
Show Worked Solution

i.   `text(Show)\ \ ddot x = -4(x − 3)`

`x` `= sqrt3\ sin\ 2t − cos\ 2t + 3`
`dot x` `= 2sqrt3\ cos\ 2t + 2\ sin\ 2t`
`ddot x` `= -4sqrt3\ sin\2t + 4\ cos\ 2t`
  `= -4(sqrt3\ sin\ 2t − cos\ 2t)`
  `= -4(sqrt3\ sin\ 2t − cos\ 2t + 3 − 3)`
  `= -4(x − 3)\ \ …text(as required)`

 

ii.  `text(Period)\ = (2pi)/n`

`n^2 = 4 ⇒ n = 2\ \ text{(part (i))}`

`:.\ text(Period)` `= (2pi)/2`
  `= pi\ \ text(seconds)`

 

iii.  `text(Write)\ \ dot x = 2sqrt3\ cos\ 2t + 2\ sin\ 2t`

`text(in form)\ \ \ A\ cos\ (2t − α)`

`A(cos\ 2t\ cos\ α + sin\ 2t\ sin\ α)` `= 2sqrt3\ cos\ 2t + 2\ sin\ 2t`
`cos\ 2t\ cos\ α + sin\ 2t\ sin\ α` `= (2sqrt3)/A\ cos\ 2t + 2/A\ sin\ 2t`
`⇒ cos\ α` `= (2sqrt3)/A`
`⇒ sin\ α` `= 2/A`
`((2sqrt3)/A)^2 + (2/A)^2` `= 1`
`(2sqrt3)^2 + 2^2` `= A^2`
`:.A` `= sqrt16`
  `= 4`

 

`:.cos\ α` `= (2sqrt3)/4 = sqrt3/2`
`α` `= pi/6`

`:. dot x = 4\ cos\ (2t − pi/6)`

 

(iv)  `text(Find)\ \ t\ \ text(when)\ \ dot x = ±2`

`text(If)\ \ dot x = 2`

`4\ cos\ (2t − pi/6)` `= 2`
`cos\ (2t − pi/6)` `= 1/2`
`2t − pi/6` `= pi/3, 2pi − pi/3`
`2t` `= pi/2, (11pi)/6`
`t` `= pi/4, (11pi)/12`

 

`text(If)\ \ dot x = -2`

`cos\ (2t − pi/6)` `= – 1/2`
`2t − pi/6` `= (2pi)/3, (4pi)/3`
`2t` `= (5pi)/6, (3pi)/2`
`t` `= (5pi)/12, (3pi)/4`

 

`:.t = pi/4, (5pi)/12, (3pi)/4, (11pi)/12\ \ text(seconds.)`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 4, Band 5, smc-1059-10-Amplitude / Period, smc-1059-20-Prove/Identify SHM, smc-1059-40-Auxiliary Angles

Mechanics, EXT2* M1 2005 HSC 5c

A particle moves in a straight line and its position at time  `t`  is given by

`x = 5 + sqrt 3 sin3t - cos 3t.`

  1. Express  `sqrt 3 sin3t − cos 3t`  in the form  `R sin(3t - alpha)`  where  `alpha`  is in radians.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. The particle is undergoing simple harmonic motion. Find the amplitude and the centre of the motion.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. When does the particle first reach its maximum speed after time  `t = 0`?  (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2 sin ( 3t – pi/6)`
  2. `text(Amplitude) = 2\ text(units),\ \ \ text(Centre of the motion at)\ \ x = 5`
  3. `pi/18`
Show Worked Solution

i.    `x = 5 + sqrt 3 sin 3t – cos 3t`

`sqrt 3 sin 3t – cos 3t` `= R sin (3t – alpha)`
  `= R sin 3t cos alpha – R cos 3t sin alpha`

 
`=> R cos alpha = sqrt 3\ \ \ \ \ R sin alpha = 1`

`R^2 = sqrt 3^2 + 1^2 = 4`

`R = 2`

`=> 2 cos alpha` `= sqrt3`
`cos alpha` `= (sqrt3)/2`
`alpha` `= pi/6`

 
`:.\ 2 sin ( 3t – pi/6) = sqrt 3 sin 3t – cos 3t`

 

ii.  `x` `= 5 + sqrt 3 sin 3t – cos 3t`
  `= 5 + 2 sin (3t – pi/6)`

 
`text(Amplitude) = 2\ text(units)`

`text(Centre of motion at)\ \ x = 5`

 

iii.  `text(Solution 1)`

`x = 5 + 2 sin (3t – pi/6)`

`dot x = 6 cos (3t – pi/6)`

 
`text(Maximum speed occurs when)`

`cos (3t – pi/6)` `= 1`
`3t – pi/6` `= 0`
`3t` `= pi/6`
`t` `= pi/18`

 
`text(Solution 2)`

`text(Maximum speed occurs at the)`

`text(centre of motion,)\ \ x = 5`

`5 + 2 sin (3t – pi/6)` `= 5`
`2 sin (3t – pi/6)` `= 0`
`sin (3t – pi/6)` `= 0`
`3t – pi/6` `= 0`
`t` `= pi/18`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 4, Band 5, smc-1059-10-Amplitude / Period, smc-1059-31-Max Speed, smc-1059-40-Auxiliary Angles

Mechanics, EXT2* M1 2012 HSC 13c

A particle is moving in a straight line according to the equation

`x = 5 + 6 cos 2t + 8 sin 2t`, 

where `x` is the displacement in metres and `t` is the time in seconds.

  1. Prove that the particle is moving in simple harmonic motion by showing that `x`  satisfies an equation of the form  `ddot x = -n^2 (x\ - c)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. When is the displacement of the particle zero for the first time?    (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `1.5\ text(seconds)\ text{(1 d.p.)}`
Show Worked Solution

i.  `text(Prove)\ ddot x = -n^2(x\ – c)`

`x` `= 5 + 6 cos 2t + 8 sin 2t`
`dot x` `= -12 sin 2t + 16 cos 2t`
`ddot x` `= – 24 cos 2t\ – 32 sin 2t`
  `= -4 (6 cos 2t + 8 sin 2t)`
  `= -2^2 (5 + 6 cos 2t + 8 sin 2t\ – 5)`
  `= -2^2 (x\ – 5)\ \ \ text(… as required)`

 

ii.  `text(Find)\ \ t\ \ text(when)\ \ x=0\ \ text(for 1st time:)`

♦ Mean mark 42%.
IMPORTANT: The critical insight required to solve `x=0` is to realise that the cosine of the difference between 2 angles, i.e. `cos (2t- theta)`, applies.
`5 + 6 cos 2t + 8 sin 2t` `= 0`
`6 cos 2t + 8 sin 2t` `= -5`
`6/10 cos 2t+ 8/10 sin 2t` `=-1/2`

 

 Calculus in the Physical World, EXT1 2012 HSC 13c Answer

`=>cos theta=6/10\ \ text(and)\ \ sin theta=8/10`
`cos 2t cos theta+sin 2t sin theta` `=- 1/2`
`cos(2t\ – theta)` `= – 1/2`

`text(S)text(ince)\ \ cos\ pi/3 = 1/2\ \ text(and)\ cos\ text(is negative)`

`text(in the 2nd and 3rd quadrants,)`

`=>2t\ – theta = pi\ – pi/3,\ pi + pi/3`

 

`text(We need the 1st time)\ \ x = 0`

`text(S)text(ince)\ \ cos theta` `= 6/10`
`theta` `= 0.9273…`

 

`:.\ 2t\ – 0.9273…` `= (2pi)/3`
`2t` `= (2pi)/3 + 0.9273…`
`t` `= 1/2 ((2pi)/3 + 0.9273…)`
  `= 1.5108…`
  `= 1.5\ text(seconds)\ text{(1 d.p.)}`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 3, Band 5, smc-1059-20-Prove/Identify SHM, smc-1059-40-Auxiliary Angles

Copyright © 2014–2025 SmarterEd.com.au · Log in